Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
6875.3-a1 6875.3-a \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.596122623$ $1.416497688$ 2.036784674 \( \frac{59319}{55} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 20\) , \( 22\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+20{x}+22$
6875.3-a2 6875.3-a \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.192245246$ $0.708248844$ 2.036784674 \( \frac{8120601}{3025} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -105\) , \( 272\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-105{x}+272$
6875.3-a3 6875.3-a \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.596122623$ $0.354124422$ 2.036784674 \( \frac{2749884201}{73205} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -730\) , \( -7228\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-730{x}-7228$
6875.3-a4 6875.3-a \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.596122623$ $0.354124422$ 2.036784674 \( \frac{22930509321}{6875} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1480\) , \( 22272\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-1480{x}+22272$
6875.3-b1 6875.3-b \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.074061744$ 2.233045629 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( -195508\) , \( -33338481\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}-195508{x}-33338481$
6875.3-b2 6875.3-b \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.370308724$ 2.233045629 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( -258\) , \( -2981\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}-258{x}-2981$
6875.3-b3 6875.3-b \(\Q(\sqrt{-11}) \) \( 5^{4} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.851543623$ 2.233045629 \( -\frac{4096}{11} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( -8\) , \( 19\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}-8{x}+19$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.