Properties

Label 2.0.11.1-44100.5-r4
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 44100 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 16 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-1070{x}+7812\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([-1070,0]),K([7812,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-1070,0]),Polrev([7812,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![-1070,0],K![7812,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((210)\) = \((-a)\cdot(a-1)\cdot(2)\cdot(-a-1)\cdot(a-2)\cdot(7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 44100 \) = \(3\cdot3\cdot4\cdot5\cdot5\cdot49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((51438240000)\) = \((-a)^{8}\cdot(a-1)^{8}\cdot(2)^{8}\cdot(-a-1)^{4}\cdot(a-2)^{4}\cdot(7)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2645892534297600000000 \) = \(3^{8}\cdot3^{8}\cdot4^{8}\cdot5^{4}\cdot5^{4}\cdot49^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{135487869158881}{51438240000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-24 a - 20 : 24 a - 398 : 1\right)$
Height \(0.65058285753234229392480644639135051589\)
Torsion structure: \(\Z/2\Z\oplus\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{31}{4} : -\frac{31}{8} : 1\right)$ $\left(-26 : 148 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.65058285753234229392480644639135051589 \)
Period: \( 0.22103874145833969758756885358118285684 \)
Tamagawa product: \( 16384 \)  =  \(2^{3}\cdot2^{3}\cdot2^{3}\cdot2^{2}\cdot2^{2}\cdot2\)
Torsion order: \(16\)
Leading coefficient: \( 11.099786811623291095701489036499613365 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((a-1)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((2)\) \(4\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((-a-1)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a-2)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((7)\) \(49\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 44100.5-r consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 210.e6
\(\Q\) 25410.bl6