Properties

Label 2.0.11.1-4096.1-CMa1
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 4096 \)
CM yes (\(-11\))
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+2\right){x}-1\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([0,0]),K([2,1]),K([-1,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([0,0]),Polrev([2,1]),Polrev([-1,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![0,0],K![2,1],K![-1,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((64)\) = \((2)^{6}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 4096 \) = \(4^{6}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((64)\) = \((2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(4^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -32768 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z[(1+\sqrt{-11})/2]\) (complex multiplication)
Geometric endomorphism ring: \(\Z[(1+\sqrt{-11})/2]\)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{U}(1)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-\frac{1}{9} a - \frac{2}{9} : \frac{20}{27} a - \frac{23}{27} : 1\right)$ $\left(1 : -1 : 1\right)$
Heights \(1.5402928387414517096144043610699822870\) \(0.30805856774829034192288087221399645740\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.26097522319860197366969558152416667229 \)
Period: \( 5.7658126385000336185511624345557420942 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.6295555520891429916106362157305178485 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(1\) \(II\) Additive \(-1\) \(6\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=11\), a split Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 4096.1-CMa consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.