Properties

Label 2.0.11.1-37125.11-g4
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 37125 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-753a-1331\right){x}+18606a+14007\)
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([0,1]),K([-1331,-753]),K([14007,18606])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,0]),Polrev([0,1]),Polrev([-1331,-753]),Polrev([14007,18606])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![0,1],K![-1331,-753],K![14007,18606]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-60a+195)\) = \((-a)\cdot(a-1)^{2}\cdot(-a-1)\cdot(a-2)^{2}\cdot(-2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37125 \) = \(3\cdot3^{2}\cdot5\cdot5^{2}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4777524675a-2081051775)\) = \((-a)^{2}\cdot(a-1)^{12}\cdot(-a-1)^{2}\cdot(a-2)^{8}\cdot(-2a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 82747278755947265625 \) = \(3^{2}\cdot3^{12}\cdot5^{2}\cdot5^{8}\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1248367530199}{24257475} a - \frac{418026913346}{8085825} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(7 a + 7 : -7 a - 119 : 1\right)$
Height \(0.71443102889262609040467841648713915489\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-10 a - 45 : 27 a - 15 : 1\right)$ $\left(\frac{15}{4} a + \frac{95}{4} : -\frac{57}{4} a + \frac{45}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.71443102889262609040467841648713915489 \)
Period: \( 0.22968358813403626232331339721371451381 \)
Tamagawa product: \( 384 \)  =  \(2\cdot2^{2}\cdot2\cdot2^{2}\cdot( 2 \cdot 3 )\)
Torsion order: \(4\)
Leading coefficient: \( 4.7496888813236940555457725917203154905 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a-1)\) \(3\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(2\) \(12\) \(6\)
\((-a-1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a-2)\) \(5\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)
\((-2a+1)\) \(11\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 37125.11-g consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.