Properties

Label 2.0.11.1-3375.10-b8
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 3375 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(206a-1579\right){x}+3981a-24011\)
sage: E = EllipticCurve([K([0,1]),K([1,1]),K([1,0]),K([-1579,206]),K([-24011,3981])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,1]),Polrev([1,0]),Polrev([-1579,206]),Polrev([-24011,3981])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,1],K![1,0],K![-1579,206],K![-24011,3981]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-15a+60)\) = \((-a)\cdot(a-1)^{2}\cdot(-a-1)^{2}\cdot(a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3375 \) = \(3\cdot3^{2}\cdot5^{2}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-692435625a+29608125)\) = \((-a)\cdot(a-1)^{18}\cdot(-a-1)^{9}\cdot(a-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1418776204833984375 \) = \(3\cdot3^{18}\cdot5^{9}\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{59052841710247}{332150625} a + \frac{4469076589604}{110716875} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{869}{81} a - \frac{4589}{81} : \frac{132554}{729} a + \frac{92866}{729} : 1\right)$
Height \(3.1045184897929029496757996297733690238\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a - \frac{89}{4} : \frac{43}{4} a + \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.1045184897929029496757996297733690238 \)
Period: \( 0.29565495520933112193952882115942461557 \)
Tamagawa product: \( 16 \)  =  \(1\cdot2^{2}\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 4.4279535157085050612334338526147266451 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a-1)\) \(3\) \(4\) \(I_{12}^{*}\) Additive \(-1\) \(2\) \(18\) \(12\)
\((-a-1)\) \(5\) \(2\) \(I_{3}^{*}\) Additive \(1\) \(2\) \(9\) \(3\)
\((a-2)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 3375.10-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.