Properties

Label 2.0.11.1-27225.6-c2
Base field \(\Q(\sqrt{-11}) \)
Conductor \((-99a+33)\)
Conductor norm \( 27225 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([3, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-169a+28\right){x}-984a+1556\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([1,1]),K([28,-169]),K([1556,-984])])
 
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([-1,1])),Pol(Vecrev([1,1])),Pol(Vecrev([28,-169])),Pol(Vecrev([1556,-984]))], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![1,1],K![28,-169],K![1556,-984]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-99a+33)\) = \((-a)\cdot(a-1)\cdot(a-2)^{2}\cdot(-2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27225 \) = \(3\cdot3\cdot5^{2}\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((33217767a+91447686)\) = \((-a)^{2}\cdot(a-1)^{10}\cdot(a-2)^{6}\cdot(-2a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 14710627334390625 \) = \(3^{2}\cdot3^{10}\cdot5^{6}\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{349209575}{59049} a - \frac{298597801}{19683} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(6 a - 26 : 70 a + 80 : 1\right)$
Height \(0.284422680426424\)
Torsion structure: \(\Z/2\Z\times\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{13}{4} a - \frac{25}{4} : \frac{17}{4} a - \frac{43}{8} : 1\right)$ $\left(-5 a - 4 : 4 a - 8 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.284422680426424 \)
Period: \( 0.534743389258248 \)
Tamagawa product: \( 320 \)  =  \(2\cdot( 2 \cdot 5 )\cdot2^{2}\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 3.66862476709266 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a-1)\) \(3\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)
\((a-2)\) \(5\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((-2a+1)\) \(11\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 27225.6-c consists of curves linked by isogenies of degrees dividing 20.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.