Properties

Label 2.0.11.1-27225.1-e1
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 27225 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1371a+516\right){x}-19461a+34672\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([1,1]),K([516,-1371]),K([34672,-19461])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([1,1]),Polrev([516,-1371]),Polrev([34672,-19461])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![1,1],K![516,-1371],K![34672,-19461]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-88a-33)\) = \((-a)^{2}\cdot(-a-1)^{2}\cdot(-2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27225 \) = \(3^{2}\cdot5^{2}\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((66660473a+96235293)\) = \((-a)^{9}\cdot(-a-1)^{4}\cdot(-2a+1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 29007177751220625 \) = \(3^{9}\cdot5^{4}\cdot11^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{336572416}{121} a - \frac{577683456}{121} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{69}{4} a - \frac{53}{2} : -\frac{255}{4} a + \frac{1459}{8} : 1\right)$
Height \(2.7621194732006148596297599634699829183\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.7621194732006148596297599634699829183 \)
Period: \( 0.30113980454908826234741921103833527166 \)
Tamagawa product: \( 8 \)  =  \(2\cdot1\cdot2^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 8.0253551330343374134994212351252687599 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)
\((-a-1)\) \(5\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((-2a+1)\) \(11\) \(4\) \(I_{3}^{*}\) Additive \(-1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27225.1-e consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.