Base field \(\Q(\sqrt{-11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
trivial
Invariants
Conductor: | $\frak{N}$ | = | \((162)\) | = | \((-a)^{4}\cdot(a-1)^{4}\cdot(2)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 26244 \) | = | \(3^{4}\cdot3^{4}\cdot4\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $-123834728448$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-123834728448)\) | = | \((-a)^{10}\cdot(a-1)^{10}\cdot(2)^{21}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 15335039969789900488704 \) | = | \(3^{10}\cdot3^{10}\cdot4^{21}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
j-invariant: | $j$ | = | \( -\frac{1159088625}{2097152} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.388990146560392500912547767732487487060 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 21 \) = \(1\cdot1\cdot( 3 \cdot 7 )\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.4629837844554308037345149919059896447 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 2.462983784 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.388990 \cdot 1 \cdot 21 } { {1^2 \cdot 3.316625} } \approx 2.462983784$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a)\) | \(3\) | \(1\) | \(IV^{*}\) | Additive | \(-1\) | \(4\) | \(10\) | \(0\) |
\((a-1)\) | \(3\) | \(1\) | \(IV^{*}\) | Additive | \(-1\) | \(4\) | \(10\) | \(0\) |
\((2)\) | \(4\) | \(21\) | \(I_{21}\) | Split multiplicative | \(-1\) | \(1\) | \(21\) | \(21\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.2 |
\(7\) | 7B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 7 and 21.
Its isogeny class
26244.5-c
consists of curves linked by isogenies of
degrees dividing 21.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 162.b2 |
\(\Q\) | 19602.v2 |