Properties

Label 2.0.11.1-26244.5-a2
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 26244 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-{x}^{2}+39{x}-19\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,0]),K([39,0]),K([-19,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([39,0]),Polrev([-19,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![0,0],K![39,0],K![-19,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((162)\) = \((-a)^{4}\cdot(a-1)^{4}\cdot(2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 26244 \) = \(3^{4}\cdot3^{4}\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3779136)\) = \((-a)^{10}\cdot(a-1)^{10}\cdot(2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 14281868906496 \) = \(3^{10}\cdot3^{10}\cdot4^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{109503}{64} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(10 : -41 : 1\right)$ $\left(-8 : 18 a - 5 : 1\right)$
Heights \(0.10197829462292110456679008894485744001\) \(0.46540767515234654924340731134483364767\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.047461481016454754268391206598584446764 \)
Period: \( 1.1018611264310826782954406120478112478 \)
Tamagawa product: \( 54 \)  =  \(3\cdot3\cdot( 2 \cdot 3 )\)
Torsion order: \(1\)
Leading coefficient: \( 6.8117006149033037391336263069045156559 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(3\) \(IV^{*}\) Additive \(1\) \(4\) \(10\) \(0\)
\((a-1)\) \(3\) \(3\) \(IV^{*}\) Additive \(1\) \(4\) \(10\) \(0\)
\((2)\) \(4\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 26244.5-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 162.a2
\(\Q\) 19602.s2