Properties

Label 2.0.11.1-19404.2-a1
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 19404 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-163a+138\right){x}-715a-354\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,1]),K([138,-163]),K([-354,-715])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([1,1]),Polrev([138,-163]),Polrev([-354,-715])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,1],K![138,-163],K![-354,-715]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-84a+42)\) = \((-a)\cdot(a-1)\cdot(2)\cdot(-2a+1)\cdot(7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19404 \) = \(3\cdot3\cdot4\cdot11\cdot49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1065577632a+1575064512)\) = \((-a)^{26}\cdot(a-1)\cdot(2)^{5}\cdot(-2a+1)\cdot(7)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4208841773473784832 \) = \(3^{26}\cdot3\cdot4^{5}\cdot11\cdot49\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{380239251435504673}{6263157401002656} a + \frac{6832513042456643645}{6263157401002656} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{3194}{529} a - \frac{6083}{529} : \frac{457211}{12167} a - \frac{443372}{12167} : 1\right)$
Height \(2.8539515719756900441132091741540964187\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.8539515719756900441132091741540964187 \)
Period: \( 0.38727080959224989109291682159847339531 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.6659684605388579293021432058497570831 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(2\) \(I_{26}\) Non-split multiplicative \(1\) \(1\) \(26\) \(26\)
\((a-1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2)\) \(4\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((-2a+1)\) \(11\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((7)\) \(49\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 19404.2-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.