Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
19404.2-a1 |
19404.2-a |
$1$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{10} \cdot 3^{27} \cdot 7^{2} \cdot 11 \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2 \) |
$2.853951571$ |
$0.387270809$ |
2.665968460 |
\( \frac{380239251435504673}{6263157401002656} a + \frac{6832513042456643645}{6263157401002656} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -163 a + 138\) , \( -715 a - 354\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-163a+138\right){x}-715a-354$ |
19404.2-b1 |
19404.2-b |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{4} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.311917496$ |
$2.430613929$ |
3.657458092 |
\( \frac{85589351}{87318} a + \frac{41134283}{43659} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( a + 10\) , \( -7 a + 3\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+10\right){x}-7a+3$ |
19404.2-b2 |
19404.2-b |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 11 \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.623834992$ |
$4.861227858$ |
3.657458092 |
\( -\frac{1997423}{2772} a + \frac{3667757}{2772} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( a\) , \( -a + 3\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-a+3$ |
19404.2-c1 |
19404.2-c |
$1$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{10} \cdot 3^{27} \cdot 7^{2} \cdot 11 \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2 \) |
$2.853951571$ |
$0.387270809$ |
2.665968460 |
\( -\frac{380239251435504673}{6263157401002656} a + \frac{171732197473622579}{149122795261968} \) |
\( \bigl[1\) , \( 1\) , \( a\) , \( 162 a - 24\) , \( 714 a - 1068\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(162a-24\right){x}+714a-1068$ |
19404.2-d1 |
19404.2-d |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 11 \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.623834992$ |
$4.861227858$ |
3.657458092 |
\( \frac{1997423}{2772} a + \frac{278389}{462} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -2\) , \( 0\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}-2{x}$ |
19404.2-d2 |
19404.2-d |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{4} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.311917496$ |
$2.430613929$ |
3.657458092 |
\( -\frac{85589351}{87318} a + \frac{55952639}{29106} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 8\) , \( 6 a + 4\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+8{x}+6a+4$ |
19404.2-e1 |
19404.2-e |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{28} \cdot 3^{4} \cdot 7^{6} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \) |
$0.039411059$ |
$0.316157574$ |
1.262305984 |
\( -\frac{7347774183121}{6119866368} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -405\) , \( 4731\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-405{x}+4731$ |
19404.2-e2 |
19404.2-e |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{14} \cdot 3^{8} \cdot 7^{12} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \) |
$0.078822119$ |
$0.158078787$ |
1.262305984 |
\( \frac{45637459887836881}{13417633152} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( -7445\) , \( 244091\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-7445{x}+244091$ |
19404.2-f1 |
19404.2-f |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{8} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.227246246$ |
$3.507744261$ |
5.191863719 |
\( \frac{4657463}{3696} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}+4{x}$ |
19404.2-f2 |
19404.2-f |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{4} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.306811561$ |
$1.753872130$ |
5.191863719 |
\( \frac{498677257}{213444} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -16\) , \( -20\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-16{x}-20$ |
19404.2-f3 |
19404.2-f |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{8} \cdot 7^{8} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.306811561$ |
$0.876936065$ |
5.191863719 |
\( \frac{223980311017}{4278582} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -126\) , \( 486\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-126{x}+486$ |
19404.2-f4 |
19404.2-f |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11^{8} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.227246246$ |
$0.876936065$ |
5.191863719 |
\( \frac{1285429208617}{614922} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -226\) , \( -1406\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-226{x}-1406$ |
19404.2-g1 |
19404.2-g |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{2} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.430413517$ |
$1.737990332$ |
3.608750846 |
\( \frac{9938375}{274428} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( 5\) , \( -23\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}+5{x}-23$ |
19404.2-g2 |
19404.2-g |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{16} \cdot 7^{4} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.860827034$ |
$0.868995166$ |
3.608750846 |
\( \frac{129938649625}{7072758} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -105\) , \( -441\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-105{x}-441$ |
19404.2-h1 |
19404.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{16} \cdot 11^{8} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \cdot 5 \) |
$1$ |
$0.068658501$ |
3.312210756 |
\( -\frac{333345918055753}{72923718045024} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -1444\) , \( 410800\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-1444{x}+410800$ |
19404.2-h2 |
19404.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{40} \cdot 3^{6} \cdot 7^{4} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{4} \cdot 5 \) |
$1$ |
$0.274634007$ |
3.312210756 |
\( \frac{29609739866953}{15259926528} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -644\) , \( -2352\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-644{x}-2352$ |
19404.2-h3 |
19404.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{20} \cdot 3^{12} \cdot 7^{8} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \cdot 5 \) |
$1$ |
$0.137317003$ |
3.312210756 |
\( \frac{21184262604460873}{216872764416} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -5764\) , \( 164560\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-5764{x}+164560$ |
19404.2-h4 |
19404.2-h |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{10} \cdot 3^{24} \cdot 7^{4} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{4} \cdot 5 \) |
$1$ |
$0.068658501$ |
3.312210756 |
\( \frac{86129359107301290313}{9166294368} \) |
\( \bigl[1\) , \( 1\) , \( 0\) , \( -92004\) , \( 10703088\bigr] \) |
${y}^2+{x}{y}={x}^{3}+{x}^{2}-92004{x}+10703088$ |
19404.2-i1 |
19404.2-i |
$1$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{6} \cdot 3^{11} \cdot 7^{2} \cdot 11 \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2 \cdot 5 \) |
$0.199443353$ |
$2.058706290$ |
4.951965467 |
\( \frac{504202537}{449064} a - \frac{92789275}{449064} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 1\) , \( 6 a - 2\) , \( -7 a - 4\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a-2\right){x}-7a-4$ |
19404.2-j1 |
19404.2-j |
$1$ |
$1$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{6} \cdot 3^{11} \cdot 7^{2} \cdot 11 \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
|
|
$1$ |
\( 2 \cdot 5 \) |
$0.199443353$ |
$2.058706290$ |
4.951965467 |
\( -\frac{504202537}{449064} a + \frac{68568877}{74844} \) |
\( \bigl[a\) , \( 1\) , \( 1\) , \( -7 a + 5\) , \( 7 a - 11\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(-7a+5\right){x}+7a-11$ |
19404.2-k1 |
19404.2-k |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{52} \cdot 3^{8} \cdot 7^{10} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \cdot 5 \cdot 13 \) |
$0.225007147$ |
$0.029755661$ |
8.397749354 |
\( -\frac{520203426765625}{11054534935707648} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1676\) , \( 5058506\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-1676{x}+5058506$ |
19404.2-k2 |
19404.2-k |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{26} \cdot 3^{16} \cdot 7^{20} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{8} \cdot 5 \cdot 13 \) |
$0.112503573$ |
$0.014877830$ |
8.397749354 |
\( \frac{10228636028672744397625}{167006381634183168} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -452236\) , \( 115355594\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-452236{x}+115355594$ |
19404.2-l1 |
19404.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{6} \cdot 11^{12} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{4} \cdot 3 \) |
$2.383427014$ |
$0.249083709$ |
8.591956653 |
\( -\frac{61653281712625}{21875235228} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -823\) , \( -11611\bigr] \) |
${y}^2+{x}{y}={x}^{3}-823{x}-11611$ |
19404.2-l2 |
19404.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{12} \cdot 3^{12} \cdot 7^{2} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3^{3} \) |
$0.794475671$ |
$0.747251128$ |
8.591956653 |
\( \frac{50447927375}{39517632} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( 77\) , \( 161\bigr] \) |
${y}^2+{x}{y}={x}^{3}+77{x}+161$ |
19404.2-l3 |
19404.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{6} \cdot 3^{24} \cdot 7^{4} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{6} \cdot 3^{3} \) |
$0.397237835$ |
$0.373625564$ |
8.591956653 |
\( \frac{5290763640625}{2291573592} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -363\) , \( 1305\bigr] \) |
${y}^2+{x}{y}={x}^{3}-363{x}+1305$ |
19404.2-l4 |
19404.2-l |
$4$ |
$6$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{8} \cdot 7^{12} \cdot 11^{6} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{6} \cdot 3 \) |
$1.191713507$ |
$0.124541854$ |
8.591956653 |
\( \frac{312196988566716625}{25367712678} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -14133\) , \( -647829\bigr] \) |
${y}^2+{x}{y}={x}^{3}-14133{x}-647829$ |
19404.2-m1 |
19404.2-m |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{8} \cdot 3^{4} \cdot 7^{6} \cdot 11^{8} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{7} \cdot 3 \) |
$1$ |
$0.464791575$ |
6.726716784 |
\( -\frac{100999381393}{723148272} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -97\) , \( 1337\bigr] \) |
${y}^2+{x}{y}={x}^{3}-97{x}+1337$ |
19404.2-m2 |
19404.2-m |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{4} \cdot 7^{24} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{5} \cdot 3 \) |
$1$ |
$0.116197893$ |
6.726716784 |
\( \frac{4770223741048753}{2740574865798} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -3507\) , \( 6507\bigr] \) |
${y}^2+{x}{y}={x}^{3}-3507{x}+6507$ |
19404.2-m3 |
19404.2-m |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{12} \cdot 11^{4} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \cdot 3 \) |
$1$ |
$0.232395787$ |
6.726716784 |
\( \frac{1763535241378513}{4612311396} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -2517\) , \( 48285\bigr] \) |
${y}^2+{x}{y}={x}^{3}-2517{x}+48285$ |
19404.2-m4 |
19404.2-m |
$4$ |
$4$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
19404.2 |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{16} \cdot 7^{6} \cdot 11^{2} \) |
$3.49790$ |
$(-a), (a-1), (-2a+1), (2), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{7} \cdot 3 \) |
$1$ |
$0.116197893$ |
6.726716784 |
\( \frac{7209828390823479793}{49509306} \) |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -40247\) , \( 3104415\bigr] \) |
${y}^2+{x}{y}={x}^{3}-40247{x}+3104415$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.