Learn more

Refine search


Results (19 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
14400.9-a1 14400.9-a \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.121903780$ $1.657820380$ 3.899763591 \( -\frac{256}{45} a - \frac{512}{15} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a + 3\) , \( 2 a - 32\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+3\right){x}+2a-32$
14400.9-a2 14400.9-a \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.121903780$ $0.828910190$ 3.899763591 \( -\frac{1192336}{75} a + \frac{625008}{25} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 52 a + 68\) , \( 132 a - 492\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(52a+68\right){x}+132a-492$
14400.9-b1 14400.9-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.519407649$ $0.889374621$ 2.228520910 \( \frac{1035520}{81} a - \frac{469504}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -48 a + 93\) , \( 52 a + 343\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-48a+93\right){x}+52a+343$
14400.9-b2 14400.9-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.038815298$ $0.444687310$ 2.228520910 \( -\frac{6745520}{6561} a + \frac{2853296}{2187} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -143 a + 83\) , \( 767 a - 1062\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-143a+83\right){x}+767a-1062$
14400.9-c1 14400.9-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.201080352$ $2.762645847$ 5.359798827 \( \frac{4864}{9} a - \frac{1792}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -2 a - 4\) , \( 5 a - 3\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-4\right){x}+5a-3$
14400.9-c2 14400.9-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.201080352$ $1.381322923$ 5.359798827 \( -\frac{218384}{81} a + \frac{40352}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -7 a + 31\) , \( 19 a + 34\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a+31\right){x}+19a+34$
14400.9-d1 14400.9-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.295731021$ $2.337565592$ 3.334911625 \( -\frac{15104}{81} a + \frac{512}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -2 a - 4\) , \( 3 a + 6\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-4\right){x}+3a+6$
14400.9-d2 14400.9-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.591462042$ $1.168782796$ 3.334911625 \( \frac{2838544}{9} a + \frac{125168}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -22 a - 89\) , \( 155 a + 247\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-22a-89\right){x}+155a+247$
14400.9-e1 14400.9-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.415850985$ 1.707580537 \( 1024 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -11 a + 14\) , \( -22 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a+14\right){x}-22a+1$
14400.9-f1 14400.9-f \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.045391113$ 2.521578241 \( -\frac{15104}{81} a + \frac{512}{27} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 13 a - 19\) , \( -62 a - 48\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(13a-19\right){x}-62a-48$
14400.9-f2 14400.9-f \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.522695556$ 2.521578241 \( \frac{2838544}{9} a + \frac{125168}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 308 a - 284\) , \( -2668 a - 796\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(308a-284\right){x}-2668a-796$
14400.9-g1 14400.9-g \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.177849306$ $1.235492782$ 7.020266251 \( \frac{4864}{9} a - \frac{1792}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 13 a - 19\) , \( -48 a + 39\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(13a-19\right){x}-48a+39$
14400.9-g2 14400.9-g \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.355698613$ $0.617746391$ 7.020266251 \( -\frac{218384}{81} a + \frac{40352}{27} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -82 a - 29\) , \( -455 a + 233\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-82a-29\right){x}-455a+233$
14400.9-h1 14400.9-h \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.652378473$ $0.284925431$ 7.291558160 \( \frac{5153719856}{263671875} a - \frac{3651420368}{87890625} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -102 a + 111\) , \( 461 a + 5561\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-102a+111\right){x}+461a+5561$
14400.9-h2 14400.9-h \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.326189236$ $0.569850862$ 7.291558160 \( -\frac{22006210816}{2278125} a + \frac{15720821248}{759375} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 128 a + 76\) , \( -85 a + 1418\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(128a+76\right){x}-85a+1418$
14400.9-i1 14400.9-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.975471119$ 4.705849741 \( \frac{135568}{25} a - \frac{174112}{25} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 36 a - 60\) , \( -168 a + 104\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(36a-60\right){x}-168a+104$
14400.9-i2 14400.9-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.950942239$ 4.705849741 \( -\frac{256}{5} a - \frac{2816}{5} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 5\) , \( -12 a + 2\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-5\right){x}-12a+2$
14400.9-j1 14400.9-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.988702110$ 4.796929978 \( \frac{1035520}{81} a - \frac{469504}{27} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 9 a + 9\) , \( 10 a - 52\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(9a+9\right){x}+10a-52$
14400.9-j2 14400.9-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.994351055$ 4.796929978 \( -\frac{6745520}{6561} a + \frac{2853296}{2187} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 4 a + 44\) , \( -60 a - 12\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(4a+44\right){x}-60a-12$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.