Properties

Base field \(\Q(\sqrt{-11}) \)
Label 2.0.11.1-14400.6-k
Conductor 14400.6
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

Elliptic curves in class 14400.6-k over \(\Q(\sqrt{-11}) \)

Isogeny class 14400.6-k contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
14400.6-k1 \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -27 a + 67\) , \( 75 a + 216\bigr] \)
14400.6-k2 \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 33 a + 47\) , \( -13 a + 812\bigr] \)
14400.6-k3 \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 153 a - 993\) , \( -3285 a + 10836\bigr] \)
14400.6-k4 \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 873 a + 767\) , \( -3973 a + 32132\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph