Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
14400.6-a1 14400.6-a \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.133051035$ $1.689161918$ 4.336837740 \( \frac{1741520}{81} a - \frac{4898912}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4 a - 36\) , \( 12 a - 72\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(4a-36\right){x}+12a-72$
14400.6-a2 14400.6-a \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.133051035$ $3.378323837$ 4.336837740 \( \frac{14080}{81} a + \frac{2816}{27} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -a - 1\) , \( 2 a - 2\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-a-1\right){x}+2a-2$
14400.6-b1 14400.6-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.194163255$ $0.316604361$ 3.647826997 \( \frac{1241463394912}{31640625} a - \frac{7661328449008}{31640625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -312 a + 1296\) , \( 8388 a + 5616\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-312a+1296\right){x}+8388a+5616$
14400.6-b2 14400.6-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.776653023$ $0.316604361$ 3.647826997 \( -\frac{489773228672}{13286025} a - \frac{690453043984}{4428675} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -707 a + 636\) , \( 4329 a - 16956\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-707a+636\right){x}+4329a-16956$
14400.6-b3 14400.6-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.388326511$ $0.158302180$ 3.647826997 \( \frac{17981916308336}{1412147682405} a + \frac{228510415169452}{470715894135} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -727 a - 24\) , \( -4475 a - 23988\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-727a-24\right){x}-4475a-23988$
14400.6-b4 14400.6-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.388326511$ $0.633208723$ 3.647826997 \( \frac{134930432}{4100625} a + \frac{3123853312}{4100625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -42 a + 81\) , \( 234 a - 216\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-42a+81\right){x}+234a-216$
14400.6-b5 14400.6-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.194163255$ $0.316604361$ 3.647826997 \( -\frac{127513286368}{1076168025} a + \frac{3845737468912}{1076168025} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 263 a - 479\) , \( 2055 a - 1623\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(263a-479\right){x}+2055a-1623$
14400.6-b6 14400.6-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $9.553306047$ $0.158302180$ 3.647826997 \( \frac{47050747084816}{3645} a + \frac{24861005118692}{1215} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -11327 a + 10176\) , \( 264573 a - 1072404\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-11327a+10176\right){x}+264573a-1072404$
14400.6-c1 14400.6-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.982322010$ $0.448491816$ 4.250715456 \( \frac{11676382636}{32805} a - \frac{10226945044}{32805} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 408 a + 56\) , \( -1200 a - 6788\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(408a+56\right){x}-1200a-6788$
14400.6-c2 14400.6-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.964644021$ $0.896983633$ 4.250715456 \( \frac{152656}{675} a + \frac{2560288}{2025} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 28 a + 16\) , \( -56 a - 36\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(28a+16\right){x}-56a-36$
14400.6-c3 14400.6-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.929288043$ $0.448491816$ 4.250715456 \( -\frac{1290496508}{4100625} a + \frac{2996648924}{1366875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -112 a - 104\) , \( -336 a - 276\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-112a-104\right){x}-336a-276$
14400.6-c4 14400.6-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.858576086$ $0.224245908$ 4.250715456 \( \frac{25259929385062}{1076168025} a + \frac{11373632297264}{358722675} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1032 a - 464\) , \( 20448 a - 10404\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-1032a-464\right){x}+20448a-10404$
14400.6-c5 14400.6-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.982322010$ $1.793967266$ 4.250715456 \( -\frac{3110144}{45} a + \frac{1590016}{45} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 13 a + 21\) , \( -30 a + 72\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(13a+21\right){x}-30a+72$
14400.6-c6 14400.6-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.858576086$ $0.224245908$ 4.250715456 \( -\frac{26459826384118}{31640625} a + \frac{14513008093504}{10546875} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1432 a - 1664\) , \( -41280 a - 7428\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-1432a-1664\right){x}-41280a-7428$
14400.6-d1 14400.6-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.683131223$ 0.823887255 \( \frac{18321686}{729} a - \frac{567362}{729} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -120 a + 48\) , \( -432 a + 828\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-120a+48\right){x}-432a+828$
14400.6-d2 14400.6-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.366262447$ 0.823887255 \( \frac{868}{27} a - \frac{856}{27} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 8\) , \( -32 a + 28\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+8{x}-32a+28$
14400.6-e1 14400.6-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.362256772$ $0.358494755$ 4.085390259 \( \frac{70879649764}{215233605} a + \frac{82388005964}{215233605} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 88 a - 288\) , \( -192 a - 2052\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(88a-288\right){x}-192a-2052$
14400.6-e2 14400.6-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.181128386$ $0.716989510$ 4.085390259 \( -\frac{217269712}{164025} a + \frac{614677408}{164025} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -52 a + 92\) , \( 8 a - 452\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-52a+92\right){x}+8a-452$
14400.6-e3 14400.6-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.590564193$ $1.433979020$ 4.085390259 \( \frac{3156736}{405} a + \frac{2649856}{405} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -12 a + 37\) , \( 30 a + 24\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-12a+37\right){x}+30a+24$
14400.6-e4 14400.6-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.362256772$ $0.358494755$ 4.085390259 \( -\frac{314400199828}{50625} a + \frac{170025009652}{50625} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -832 a + 1352\) , \( -1600 a - 26516\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-832a+1352\right){x}-1600a-26516$
14400.6-f1 14400.6-f \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.529263930$ 1.276632633 \( -\frac{3134260907776}{253125} a - \frac{17712079616}{253125} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 341 a - 789\) , \( 5066 a - 6063\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(341a-789\right){x}+5066a-6063$
14400.6-f2 14400.6-f \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.264631965$ 1.276632633 \( \frac{142582892404208}{64072265625} a - \frac{201926467691072}{64072265625} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 346 a - 749\) , \( 5159 a - 7119\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(346a-749\right){x}+5159a-7119$
14400.6-g1 14400.6-g \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.372286032$ $0.722451424$ 5.190019933 \( \frac{1912576}{6561} a + \frac{841472}{2187} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 36 a - 54\) , \( 81 a - 243\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(36a-54\right){x}+81a-243$
14400.6-g2 14400.6-g \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.744572065$ $0.361225712$ 5.190019933 \( -\frac{690575344}{531441} a + \frac{2124433696}{531441} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -259 a + 211\) , \( 1209 a - 3144\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-259a+211\right){x}+1209a-3144$
14400.6-h1 14400.6-h \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.366262447$ 2.471661766 \( -\frac{868}{27} a + \frac{4}{9} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a - 9\) , \( 21 a - 48\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a-9\right){x}+21a-48$
14400.6-h2 14400.6-h \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.683131223$ 2.471661766 \( -\frac{18321686}{729} a + \frac{5918108}{243} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -119 a + 31\) , \( 629 a - 984\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-119a+31\right){x}+629a-984$
14400.6-i1 14400.6-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.085518907$ 3.300469852 \( \frac{239476497043604828}{177978515625} a - \frac{708451318291482152}{177978515625} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -12046 a - 10585\) , \( -929137 a + 55513\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-12046a-10585\right){x}-929137a+55513$
14400.6-i2 14400.6-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.042759453$ 3.300469852 \( -\frac{1765472089148940783166}{1609325408935546875} a + \frac{1086814205455537804894}{1609325408935546875} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -12766 a - 7345\) , \( -943681 a - 343439\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-12766a-7345\right){x}-943681a-343439$
14400.6-i3 14400.6-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.171037814$ 3.300469852 \( \frac{9079300029968}{8303765625} a + \frac{6689202723088}{8303765625} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -706 a - 865\) , \( -13837 a + 6913\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-706a-865\right){x}-13837a+6913$
14400.6-i4 14400.6-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.342075629$ 3.300469852 \( -\frac{4068709022464}{5380840125} a + \frac{2162529966592}{1793613375} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 54 a + 340\) , \( -1821 a + 66\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(54a+340\right){x}-1821a+66$
14400.6-i5 14400.6-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.085518907$ 3.300469852 \( -\frac{516903927314317196}{35303692060125} a + \frac{178322148386632664}{35303692060125} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1526 a - 10425\) , \( 88839 a + 413721\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1526a-10425\right){x}+88839a+413721$
14400.6-i6 14400.6-i \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.042759453$ 3.300469852 \( -\frac{3756149521920000146}{421875} a + \frac{4395622256963999714}{421875} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -192766 a - 169345\) , \( -60012193 a + 3953665\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-192766a-169345\right){x}-60012193a+3953665$
14400.6-j1 14400.6-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.775828395$ $1.182999906$ 4.427657523 \( \frac{2117632}{18225} a + \frac{10287104}{6075} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 3 a + 32\) , \( 2 a + 32\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(3a+32\right){x}+2a+32$
14400.6-j2 14400.6-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.387914197$ $0.591499953$ 4.427657523 \( -\frac{299100736}{2657205} a + \frac{1544345968}{885735} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -2 a - 133\) , \( -131 a + 143\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-2a-133\right){x}-131a+143$
14400.6-j3 14400.6-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.551656790$ $0.591499953$ 4.427657523 \( -\frac{1522356704}{32805} a + \frac{3985360976}{32805} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -7 a + 327\) , \( 1447 a - 408\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-7a+327\right){x}+1447a-408$
14400.6-j4 14400.6-j \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.551656790$ $0.591499953$ 4.427657523 \( \frac{4735750624}{16875} a + \frac{648744976}{1875} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 48 a + 392\) , \( -1780 a + 1976\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(48a+392\right){x}-1780a+1976$
14400.6-k1 14400.6-k \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.099445781$ 1.988972255 \( \frac{10213168}{675} a - \frac{12616912}{675} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -27 a + 67\) , \( 75 a + 216\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-27a+67\right){x}+75a+216$
14400.6-k2 14400.6-k \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.549722890$ 1.988972255 \( \frac{54510092}{455625} a - \frac{91125128}{455625} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 33 a + 47\) , \( -13 a + 812\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(33a+47\right){x}-13a+812$
14400.6-k3 14400.6-k \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.274861445$ 1.988972255 \( -\frac{84522437194}{13286025} a + \frac{96190711246}{13286025} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 153 a - 993\) , \( -3285 a + 10836\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(153a-993\right){x}-3285a+10836$
14400.6-k4 14400.6-k \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.274861445$ 1.988972255 \( -\frac{2323817506786}{10546875} a + \frac{4937123627974}{10546875} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 873 a + 767\) , \( -3973 a + 32132\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(873a+767\right){x}-3973a+32132$
14400.6-l1 14400.6-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.406444152$ 1.960760367 \( \frac{207646}{6561} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -46 a + 15\) , \( 673 a + 1275\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-46a+15\right){x}+673a+1275$
14400.6-l2 14400.6-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.251553221$ 1.960760367 \( \frac{2048}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -a\) , \( -2 a\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-a{x}-2a$
14400.6-l3 14400.6-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.625776610$ 1.960760367 \( \frac{35152}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 14 a - 5\) , \( -3 a - 33\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(14a-5\right){x}-3a-33$
14400.6-l4 14400.6-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812888305$ 1.960760367 \( \frac{1556068}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 74 a - 25\) , \( 217 a + 227\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(74a-25\right){x}+217a+227$
14400.6-l5 14400.6-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.812888305$ 1.960760367 \( \frac{28756228}{3} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 194 a - 65\) , \( -687 a - 1605\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(194a-65\right){x}-687a-1605$
14400.6-l6 14400.6-l \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.406444152$ 1.960760367 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 1154 a - 385\) , \( 12241 a + 19019\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(1154a-385\right){x}+12241a+19019$
14400.6-m1 14400.6-m \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.214047074$ 2.928391727 \( \frac{77422592}{50625} a - \frac{312240128}{50625} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -21 a - 10\) , \( -88 a + 62\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-21a-10\right){x}-88a+62$
14400.6-m2 14400.6-m \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.303511768$ 2.928391727 \( -\frac{354528979184}{215233605} a - \frac{877439144164}{215233605} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 344 a + 160\) , \( 576 a - 7776\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(344a+160\right){x}+576a-7776$
14400.6-m3 14400.6-m \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.607023537$ 2.928391727 \( -\frac{4124709472}{3515625} a - \frac{5875495952}{3515625} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 9 a - 145\) , \( -169 a + 764\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-145\right){x}-169a+764$
14400.6-m4 14400.6-m \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.607023537$ 2.928391727 \( \frac{8006528}{164025} a - \frac{266904752}{164025} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -36 a + 120\) , \( -288 a - 288\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-36a+120\right){x}-288a-288$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.