Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1089.3-a1 1089.3-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.143742936$ $0.490498967$ 1.353194323 \( -24729001 \) \( \bigl[a\) , \( a + 1\) , \( 1\) , \( -330 a - 662\) , \( -6012 a - 4518\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-330a-662\right){x}-6012a-4518$
1089.3-a2 1089.3-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.103976630$ $5.395488645$ 1.353194323 \( -121 \) \( \bigl[a\) , \( a + 1\) , \( 1\) , \( -2\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}-2{x}$
1089.3-b1 1089.3-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.280829557$ 1.544738568 \( \frac{393194}{11} a - \frac{16965365}{11} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( 58 a - 56\) , \( 212 a + 55\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(58a-56\right){x}+212a+55$
1089.3-b2 1089.3-b \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.561659115$ 1.544738568 \( \frac{7136}{11} a + \frac{4759}{11} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( 3 a - 1\) , \( 3 a\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(3a-1\right){x}+3a$
1089.3-c1 1089.3-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $9.765222448$ $0.064462474$ 3.036775978 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -86024 a - 172048\) , \( -23367062 a - 20639733\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-86024a-172048\right){x}-23367062a-20639733$
1089.3-c2 1089.3-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.953044489$ $0.322312373$ 3.036775978 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -114 a - 228\) , \( -1962 a - 1973\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-114a-228\right){x}-1962a-1973$
1089.3-c3 1089.3-c \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.390608897$ $1.611561869$ 3.036775978 \( -\frac{4096}{11} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -4 a - 8\) , \( 18 a + 7\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-8\right){x}+18a+7$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.