Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1089.3-a1 |
1089.3-a |
$2$ |
$11$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 11^{10} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$11$ |
11B.10.4[2] |
$1$ |
\( 2 \) |
$1.143742936$ |
$0.490498967$ |
1.353194323 |
\( -24729001 \) |
\( \bigl[a\) , \( a + 1\) , \( 1\) , \( -330 a - 662\) , \( -6012 a - 4518\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-330a-662\right){x}-6012a-4518$ |
1089.3-a2 |
1089.3-a |
$2$ |
$11$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 11^{2} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$11$ |
11B.10.2[2] |
$1$ |
\( 2 \) |
$0.103976630$ |
$5.395488645$ |
1.353194323 |
\( -121 \) |
\( \bigl[a\) , \( a + 1\) , \( 1\) , \( -2\) , \( 0\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}-2{x}$ |
1089.3-b1 |
1089.3-b |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{3} \cdot 11^{8} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$1.280829557$ |
1.544738568 |
\( \frac{393194}{11} a - \frac{16965365}{11} \) |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( 58 a - 56\) , \( 212 a + 55\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(58a-56\right){x}+212a+55$ |
1089.3-b2 |
1089.3-b |
$2$ |
$2$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{3} \cdot 11^{7} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.561659115$ |
1.544738568 |
\( \frac{7136}{11} a + \frac{4759}{11} \) |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( 3 a - 1\) , \( 3 a\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(3a-1\right){x}+3a$ |
1089.3-c1 |
1089.3-c |
$3$ |
$25$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 11^{8} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 5$ |
2Cn, 5B.4.2 |
$1$ |
\( 2^{2} \) |
$9.765222448$ |
$0.064462474$ |
3.036775978 |
\( -\frac{52893159101157376}{11} \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -86024 a - 172048\) , \( -23367062 a - 20639733\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-86024a-172048\right){x}-23367062a-20639733$ |
1089.3-c2 |
1089.3-c |
$3$ |
$25$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 11^{16} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 5$ |
2Cn, 5Cs.4.1 |
$1$ |
\( 2^{2} \) |
$1.953044489$ |
$0.322312373$ |
3.036775978 |
\( -\frac{122023936}{161051} \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -114 a - 228\) , \( -1962 a - 1973\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-114a-228\right){x}-1962a-1973$ |
1089.3-c3 |
1089.3-c |
$3$ |
$25$ |
\(\Q(\sqrt{-11}) \) |
$2$ |
$[0, 1]$ |
1089.3 |
\( 3^{2} \cdot 11^{2} \) |
\( 3^{6} \cdot 11^{8} \) |
$1.70252$ |
$(a-1), (-2a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 5$ |
2Cn, 5B.4.1 |
$1$ |
\( 2^{2} \) |
$0.390608897$ |
$1.611561869$ |
3.036775978 |
\( -\frac{4096}{11} \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -4 a - 8\) , \( 18 a + 7\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-8\right){x}+18a+7$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.