Properties

Base field \(\Q(\sqrt{-11}) \)
Label 2.0.11.1-108.1-a2
Conductor \((4 a + 6)\)
Conductor norm \( 108 \)
CM no
base-change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 3)
 
gp (2.8): K = nfinit(a^2 - a + 3);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a + 1\right) y = x^{3} + \left(a - 1\right) x^{2} + \left(3 a - 14\right) x + 2 a - 11 \)
magma: E := ChangeRing(EllipticCurve([a + 1, a - 1, a + 1, 3*a - 14, 2*a - 11]),K);
 
sage: E = EllipticCurve(K, [a + 1, a - 1, a + 1, 3*a - 14, 2*a - 11])
 
gp (2.8): E = ellinit([a + 1, a - 1, a + 1, 3*a - 14, 2*a - 11],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((4 a + 6)\) = \( \left(2\right) \cdot \left(-a\right)^{3} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 108 \) = \( 3^{3} \cdot 4 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((37888 a - 53760)\) = \( \left(2\right)^{9} \cdot \left(-a\right)^{9} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 5159780352 \) = \( 3^{9} \cdot 4^{9} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{488881}{256} a + \frac{1381533}{512} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 1 \)
magma: Rank(E);
 
sage: E.rank()
 

Generator: $\left(2 a - 5 : 2 a + 17 : 1\right)$

Height: 0.13074274971306377

magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 0.130742749713

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/3\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-2 a + 7 : 2 a - 19 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) \(3\) \(3\) \(IV^*\) Additive \(-1\) \(3\) \(9\) \(0\)
\( \left(2\right) \) \(4\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 108.1-a consists of curves linked by isogenies of degrees dividing 27.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.