Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$
$K$ is the global number field defined by
\( x^{4} - 59x^{2} + 900 \)
$\times$
\(\chi_{ 476 } ( 1, ·)\)
\(\chi_{ 476 } ( 475, ·)\)
\(\chi_{ 476 } ( 237, ·)\)
\(\chi_{ 476 } ( 239, ·)\)
\(\chi_{ 476 }(1, ·)\)
\(\chi_{ 476 } ( 1, ·)\)
\(\chi_{ 476 } ( 475, ·)\)
\(\chi_{ 476 } ( 237, ·)\)
\(\chi_{ 476 } ( 239, ·)\)
\(\chi_{ 476 }(475, ·)\)
\(\chi_{ 476 } ( 475, ·)\)
\(\chi_{ 476 } ( 1, ·)\)
\(\chi_{ 476 } ( 239, ·)\)
\(\chi_{ 476 } ( 237, ·)\)
\(\chi_{ 476 }(237, ·)\)
\(\chi_{ 476 } ( 237, ·)\)
\(\chi_{ 476 } ( 239, ·)\)
\(\chi_{ 476 } ( 1, ·)\)
\(\chi_{ 476 } ( 475, ·)\)
\(\chi_{ 476 }(239, ·)\)
\(\chi_{ 476 } ( 239, ·)\)
\(\chi_{ 476 } ( 237, ·)\)
\(\chi_{ 476 } ( 475, ·)\)
\(\chi_{ 476 } ( 1, ·)\)