## Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by $$x^{6}$$ $$\mathstrut -\mathstrut 6 x^{4}$$ $$\mathstrut +\mathstrut 9 x^{2}$$ $$\mathstrut -\mathstrut 3$$

$\times$ $$\chi_{ 36 } ( 1, ·)$$ $$\chi_{ 36 } ( 35, ·)$$ $$\chi_{ 36 } ( 23, ·)$$ $$\chi_{ 36 } ( 25, ·)$$ $$\chi_{ 36 } ( 11, ·)$$ $$\chi_{ 36 } ( 13, ·)$$
$$\chi_{ 36 }(1, ·)$$ $$\chi_{ 36 } ( 1, ·)$$ $$\chi_{ 36 } ( 35, ·)$$ $$\chi_{ 36 } ( 23, ·)$$ $$\chi_{ 36 } ( 25, ·)$$ $$\chi_{ 36 } ( 11, ·)$$ $$\chi_{ 36 } ( 13, ·)$$
$$\chi_{ 36 }(35, ·)$$ $$\chi_{ 36 } ( 35, ·)$$ $$\chi_{ 36 } ( 1, ·)$$ $$\chi_{ 36 } ( 13, ·)$$ $$\chi_{ 36 } ( 11, ·)$$ $$\chi_{ 36 } ( 25, ·)$$ $$\chi_{ 36 } ( 23, ·)$$
$$\chi_{ 36 }(23, ·)$$ $$\chi_{ 36 } ( 23, ·)$$ $$\chi_{ 36 } ( 13, ·)$$ $$\chi_{ 36 } ( 25, ·)$$ $$\chi_{ 36 } ( 35, ·)$$ $$\chi_{ 36 } ( 1, ·)$$ $$\chi_{ 36 } ( 11, ·)$$
$$\chi_{ 36 }(25, ·)$$ $$\chi_{ 36 } ( 25, ·)$$ $$\chi_{ 36 } ( 11, ·)$$ $$\chi_{ 36 } ( 35, ·)$$ $$\chi_{ 36 } ( 13, ·)$$ $$\chi_{ 36 } ( 23, ·)$$ $$\chi_{ 36 } ( 1, ·)$$
$$\chi_{ 36 }(11, ·)$$ $$\chi_{ 36 } ( 11, ·)$$ $$\chi_{ 36 } ( 25, ·)$$ $$\chi_{ 36 } ( 1, ·)$$ $$\chi_{ 36 } ( 23, ·)$$ $$\chi_{ 36 } ( 13, ·)$$ $$\chi_{ 36 } ( 35, ·)$$
$$\chi_{ 36 }(13, ·)$$ $$\chi_{ 36 } ( 13, ·)$$ $$\chi_{ 36 } ( 23, ·)$$ $$\chi_{ 36 } ( 11, ·)$$ $$\chi_{ 36 } ( 1, ·)$$ $$\chi_{ 36 } ( 35, ·)$$ $$\chi_{ 36 } ( 25, ·)$$