Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display

$\times$ \(\chi_{ 36 } ( 1, ·)\) \(\chi_{ 36 } ( 19, ·)\) \(\chi_{ 36 } ( 7, ·)\) \(\chi_{ 36 } ( 25, ·)\) \(\chi_{ 36 } ( 13, ·)\) \(\chi_{ 36 } ( 31, ·)\)
\(\chi_{ 36 }(1, ·)\) \(\chi_{ 36 } ( 1, ·)\) \(\chi_{ 36 } ( 19, ·)\) \(\chi_{ 36 } ( 7, ·)\) \(\chi_{ 36 } ( 25, ·)\) \(\chi_{ 36 } ( 13, ·)\) \(\chi_{ 36 } ( 31, ·)\)
\(\chi_{ 36 }(19, ·)\) \(\chi_{ 36 } ( 19, ·)\) \(\chi_{ 36 } ( 1, ·)\) \(\chi_{ 36 } ( 25, ·)\) \(\chi_{ 36 } ( 7, ·)\) \(\chi_{ 36 } ( 31, ·)\) \(\chi_{ 36 } ( 13, ·)\)
\(\chi_{ 36 }(7, ·)\) \(\chi_{ 36 } ( 7, ·)\) \(\chi_{ 36 } ( 25, ·)\) \(\chi_{ 36 } ( 13, ·)\) \(\chi_{ 36 } ( 31, ·)\) \(\chi_{ 36 } ( 19, ·)\) \(\chi_{ 36 } ( 1, ·)\)
\(\chi_{ 36 }(25, ·)\) \(\chi_{ 36 } ( 25, ·)\) \(\chi_{ 36 } ( 7, ·)\) \(\chi_{ 36 } ( 31, ·)\) \(\chi_{ 36 } ( 13, ·)\) \(\chi_{ 36 } ( 1, ·)\) \(\chi_{ 36 } ( 19, ·)\)
\(\chi_{ 36 }(13, ·)\) \(\chi_{ 36 } ( 13, ·)\) \(\chi_{ 36 } ( 31, ·)\) \(\chi_{ 36 } ( 19, ·)\) \(\chi_{ 36 } ( 1, ·)\) \(\chi_{ 36 } ( 25, ·)\) \(\chi_{ 36 } ( 7, ·)\)
\(\chi_{ 36 }(31, ·)\) \(\chi_{ 36 } ( 31, ·)\) \(\chi_{ 36 } ( 13, ·)\) \(\chi_{ 36 } ( 1, ·)\) \(\chi_{ 36 } ( 19, ·)\) \(\chi_{ 36 } ( 7, ·)\) \(\chi_{ 36 } ( 25, ·)\)