Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \)

$\times$ \(\chi_{ 35 } ( 1, ·)\) \(\chi_{ 35 } ( 16, ·)\) \(\chi_{ 35 } ( 4, ·)\) \(\chi_{ 35 } ( 9, ·)\) \(\chi_{ 35 } ( 11, ·)\) \(\chi_{ 35 } ( 29, ·)\)
\(\chi_{ 35 }(1, ·)\) \(\chi_{ 35 } ( 1, ·)\) \(\chi_{ 35 } ( 16, ·)\) \(\chi_{ 35 } ( 4, ·)\) \(\chi_{ 35 } ( 9, ·)\) \(\chi_{ 35 } ( 11, ·)\) \(\chi_{ 35 } ( 29, ·)\)
\(\chi_{ 35 }(16, ·)\) \(\chi_{ 35 } ( 16, ·)\) \(\chi_{ 35 } ( 11, ·)\) \(\chi_{ 35 } ( 29, ·)\) \(\chi_{ 35 } ( 4, ·)\) \(\chi_{ 35 } ( 1, ·)\) \(\chi_{ 35 } ( 9, ·)\)
\(\chi_{ 35 }(4, ·)\) \(\chi_{ 35 } ( 4, ·)\) \(\chi_{ 35 } ( 29, ·)\) \(\chi_{ 35 } ( 16, ·)\) \(\chi_{ 35 } ( 1, ·)\) \(\chi_{ 35 } ( 9, ·)\) \(\chi_{ 35 } ( 11, ·)\)
\(\chi_{ 35 }(9, ·)\) \(\chi_{ 35 } ( 9, ·)\) \(\chi_{ 35 } ( 4, ·)\) \(\chi_{ 35 } ( 1, ·)\) \(\chi_{ 35 } ( 11, ·)\) \(\chi_{ 35 } ( 29, ·)\) \(\chi_{ 35 } ( 16, ·)\)
\(\chi_{ 35 }(11, ·)\) \(\chi_{ 35 } ( 11, ·)\) \(\chi_{ 35 } ( 1, ·)\) \(\chi_{ 35 } ( 9, ·)\) \(\chi_{ 35 } ( 29, ·)\) \(\chi_{ 35 } ( 16, ·)\) \(\chi_{ 35 } ( 4, ·)\)
\(\chi_{ 35 }(29, ·)\) \(\chi_{ 35 } ( 29, ·)\) \(\chi_{ 35 } ( 9, ·)\) \(\chi_{ 35 } ( 11, ·)\) \(\chi_{ 35 } ( 16, ·)\) \(\chi_{ 35 } ( 4, ·)\) \(\chi_{ 35 } ( 1, ·)\)