Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by \( x^{6} + 65x^{4} + 650x^{2} + 1625 \) Copy content Toggle raw display

$\times$ \(\chi_{ 260 } ( 1, ·)\) \(\chi_{ 260 } ( 259, ·)\) \(\chi_{ 260 } ( 179, ·)\) \(\chi_{ 260 } ( 81, ·)\) \(\chi_{ 260 } ( 199, ·)\) \(\chi_{ 260 } ( 61, ·)\)
\(\chi_{ 260 }(1, ·)\) \(\chi_{ 260 } ( 1, ·)\) \(\chi_{ 260 } ( 259, ·)\) \(\chi_{ 260 } ( 179, ·)\) \(\chi_{ 260 } ( 81, ·)\) \(\chi_{ 260 } ( 199, ·)\) \(\chi_{ 260 } ( 61, ·)\)
\(\chi_{ 260 }(259, ·)\) \(\chi_{ 260 } ( 259, ·)\) \(\chi_{ 260 } ( 1, ·)\) \(\chi_{ 260 } ( 81, ·)\) \(\chi_{ 260 } ( 179, ·)\) \(\chi_{ 260 } ( 61, ·)\) \(\chi_{ 260 } ( 199, ·)\)
\(\chi_{ 260 }(179, ·)\) \(\chi_{ 260 } ( 179, ·)\) \(\chi_{ 260 } ( 81, ·)\) \(\chi_{ 260 } ( 61, ·)\) \(\chi_{ 260 } ( 199, ·)\) \(\chi_{ 260 } ( 1, ·)\) \(\chi_{ 260 } ( 259, ·)\)
\(\chi_{ 260 }(81, ·)\) \(\chi_{ 260 } ( 81, ·)\) \(\chi_{ 260 } ( 179, ·)\) \(\chi_{ 260 } ( 199, ·)\) \(\chi_{ 260 } ( 61, ·)\) \(\chi_{ 260 } ( 259, ·)\) \(\chi_{ 260 } ( 1, ·)\)
\(\chi_{ 260 }(199, ·)\) \(\chi_{ 260 } ( 199, ·)\) \(\chi_{ 260 } ( 61, ·)\) \(\chi_{ 260 } ( 1, ·)\) \(\chi_{ 260 } ( 259, ·)\) \(\chi_{ 260 } ( 81, ·)\) \(\chi_{ 260 } ( 179, ·)\)
\(\chi_{ 260 }(61, ·)\) \(\chi_{ 260 } ( 61, ·)\) \(\chi_{ 260 } ( 199, ·)\) \(\chi_{ 260 } ( 259, ·)\) \(\chi_{ 260 } ( 1, ·)\) \(\chi_{ 260 } ( 179, ·)\) \(\chi_{ 260 } ( 81, ·)\)