Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$
$K$ is the global number field defined by \( x^{4} + x^{2} + 49 \)
$\times$ | \(\chi_{ 195 } ( 1, ·)\) | \(\chi_{ 195 } ( 194, ·)\) | \(\chi_{ 195 } ( 181, ·)\) | \(\chi_{ 195 } ( 14, ·)\) |
---|---|---|---|---|
\(\chi_{ 195 }(1, ·)\) | \(\chi_{ 195 } ( 1, ·)\) | \(\chi_{ 195 } ( 194, ·)\) | \(\chi_{ 195 } ( 181, ·)\) | \(\chi_{ 195 } ( 14, ·)\) |
\(\chi_{ 195 }(194, ·)\) | \(\chi_{ 195 } ( 194, ·)\) | \(\chi_{ 195 } ( 1, ·)\) | \(\chi_{ 195 } ( 14, ·)\) | \(\chi_{ 195 } ( 181, ·)\) |
\(\chi_{ 195 }(181, ·)\) | \(\chi_{ 195 } ( 181, ·)\) | \(\chi_{ 195 } ( 14, ·)\) | \(\chi_{ 195 } ( 1, ·)\) | \(\chi_{ 195 } ( 194, ·)\) |
\(\chi_{ 195 }(14, ·)\) | \(\chi_{ 195 } ( 14, ·)\) | \(\chi_{ 195 } ( 181, ·)\) | \(\chi_{ 195 } ( 194, ·)\) | \(\chi_{ 195 } ( 1, ·)\) |