Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$
$K$ is the global number field defined by
\( x^{6} - x^{5} - 5x^{4} + 4x^{3} + 6x^{2} - 3x - 1 \)
$\times$ | \(\chi_{ 13 } ( 1, ·)\) | \(\chi_{ 13 } ( 3, ·)\) | \(\chi_{ 13 } ( 4, ·)\) | \(\chi_{ 13 } ( 9, ·)\) | \(\chi_{ 13 } ( 10, ·)\) | \(\chi_{ 13 } ( 12, ·)\) |
---|---|---|---|---|---|---|
\(\chi_{ 13 }(1, ·)\) | \(\chi_{ 13 } ( 1, ·)\) | \(\chi_{ 13 } ( 3, ·)\) | \(\chi_{ 13 } ( 4, ·)\) | \(\chi_{ 13 } ( 9, ·)\) | \(\chi_{ 13 } ( 10, ·)\) | \(\chi_{ 13 } ( 12, ·)\) |
\(\chi_{ 13 }(3, ·)\) | \(\chi_{ 13 } ( 3, ·)\) | \(\chi_{ 13 } ( 9, ·)\) | \(\chi_{ 13 } ( 12, ·)\) | \(\chi_{ 13 } ( 1, ·)\) | \(\chi_{ 13 } ( 4, ·)\) | \(\chi_{ 13 } ( 10, ·)\) |
\(\chi_{ 13 }(4, ·)\) | \(\chi_{ 13 } ( 4, ·)\) | \(\chi_{ 13 } ( 12, ·)\) | \(\chi_{ 13 } ( 3, ·)\) | \(\chi_{ 13 } ( 10, ·)\) | \(\chi_{ 13 } ( 1, ·)\) | \(\chi_{ 13 } ( 9, ·)\) |
\(\chi_{ 13 }(9, ·)\) | \(\chi_{ 13 } ( 9, ·)\) | \(\chi_{ 13 } ( 1, ·)\) | \(\chi_{ 13 } ( 10, ·)\) | \(\chi_{ 13 } ( 3, ·)\) | \(\chi_{ 13 } ( 12, ·)\) | \(\chi_{ 13 } ( 4, ·)\) |
\(\chi_{ 13 }(10, ·)\) | \(\chi_{ 13 } ( 10, ·)\) | \(\chi_{ 13 } ( 4, ·)\) | \(\chi_{ 13 } ( 1, ·)\) | \(\chi_{ 13 } ( 12, ·)\) | \(\chi_{ 13 } ( 9, ·)\) | \(\chi_{ 13 } ( 3, ·)\) |
\(\chi_{ 13 }(12, ·)\) | \(\chi_{ 13 } ( 12, ·)\) | \(\chi_{ 13 } ( 10, ·)\) | \(\chi_{ 13 } ( 9, ·)\) | \(\chi_{ 13 } ( 4, ·)\) | \(\chi_{ 13 } ( 3, ·)\) | \(\chi_{ 13 } ( 1, ·)\) |