Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display

$\times$ \(\chi_{ 11 } ( 1, ·)\) \(\chi_{ 11 } ( 3, ·)\) \(\chi_{ 11 } ( 4, ·)\) \(\chi_{ 11 } ( 5, ·)\) \(\chi_{ 11 } ( 9, ·)\)
\(\chi_{ 11 }(1, ·)\) \(\chi_{ 11 } ( 1, ·)\) \(\chi_{ 11 } ( 3, ·)\) \(\chi_{ 11 } ( 4, ·)\) \(\chi_{ 11 } ( 5, ·)\) \(\chi_{ 11 } ( 9, ·)\)
\(\chi_{ 11 }(3, ·)\) \(\chi_{ 11 } ( 3, ·)\) \(\chi_{ 11 } ( 9, ·)\) \(\chi_{ 11 } ( 1, ·)\) \(\chi_{ 11 } ( 4, ·)\) \(\chi_{ 11 } ( 5, ·)\)
\(\chi_{ 11 }(4, ·)\) \(\chi_{ 11 } ( 4, ·)\) \(\chi_{ 11 } ( 1, ·)\) \(\chi_{ 11 } ( 5, ·)\) \(\chi_{ 11 } ( 9, ·)\) \(\chi_{ 11 } ( 3, ·)\)
\(\chi_{ 11 }(5, ·)\) \(\chi_{ 11 } ( 5, ·)\) \(\chi_{ 11 } ( 4, ·)\) \(\chi_{ 11 } ( 9, ·)\) \(\chi_{ 11 } ( 3, ·)\) \(\chi_{ 11 } ( 1, ·)\)
\(\chi_{ 11 }(9, ·)\) \(\chi_{ 11 } ( 9, ·)\) \(\chi_{ 11 } ( 5, ·)\) \(\chi_{ 11 } ( 3, ·)\) \(\chi_{ 11 } ( 1, ·)\) \(\chi_{ 11 } ( 4, ·)\)