## Group table for the character group for $\textrm{Gal}(K/\mathbb{Q})$

$K$ is the global number field defined by <span class="tset-container"><span class="tset-raw" id="tset-raw-16" raw="x^17 - x^16 - 48*x^15 + 105*x^14 + 763*x^13 - 2579*x^12 - 3653*x^11 + 23311*x^10 - 11031*x^9 - 74838*x^8 + 107759*x^7 + 50288*x^6 - 198615*x^5 + 102976*x^4 + 58507*x^3 - 75722*x^2 + 25763*x - 2837" israw="0" ondblclick="ondouble(16)">$$x^{17} - x^{16} - 48 x^{15} + 105 x^{14} + 763 x^{13} - 2579 x^{12} - 3653 x^{11} + 23311 x^{10} - 11031 x^{9} - 74838 x^{8} + 107759 x^{7} + 50288 x^{6} - 198615 x^{5} + 102976 x^{4} + 58507 x^{3} - 75722 x^{2} + 25763 x - 2837$$</span>&nbsp;&nbsp;<span onclick="iconrawtset(16)"><img alt="Toggle raw display" src="/static/images/t2r.png" class="tset-icon" id="tset-raw-icon-16" style="position:relative;top: 2px"></span></span>

$\times$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 61, ·)$$
$$\chi_{ 103 }(1, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 61, ·)$$
$$\chi_{ 103 }(64, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 93, ·)$$
$$\chi_{ 103 }(66, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 9, ·)$$
$$\chi_{ 103 }(8, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 76, ·)$$
$$\chi_{ 103 }(9, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 34, ·)$$
$$\chi_{ 103 }(76, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 1, ·)$$
$$\chi_{ 103 }(13, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 72, ·)$$
$$\chi_{ 103 }(14, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 30, ·)$$
$$\chi_{ 103 }(79, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 81, ·)$$
$$\chi_{ 103 }(81, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 100, ·)$$
$$\chi_{ 103 }(23, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 64, ·)$$
$$\chi_{ 103 }(93, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 8, ·)$$
$$\chi_{ 103 }(30, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 79, ·)$$
$$\chi_{ 103 }(34, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 14, ·)$$
$$\chi_{ 103 }(100, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 23, ·)$$
$$\chi_{ 103 }(72, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 13, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 66, ·)$$
$$\chi_{ 103 }(61, ·)$$ $$\chi_{ 103 } ( 61, ·)$$ $$\chi_{ 103 } ( 93, ·)$$ $$\chi_{ 103 } ( 9, ·)$$ $$\chi_{ 103 } ( 76, ·)$$ $$\chi_{ 103 } ( 34, ·)$$ $$\chi_{ 103 } ( 1, ·)$$ $$\chi_{ 103 } ( 72, ·)$$ $$\chi_{ 103 } ( 30, ·)$$ $$\chi_{ 103 } ( 81, ·)$$ $$\chi_{ 103 } ( 100, ·)$$ $$\chi_{ 103 } ( 64, ·)$$ $$\chi_{ 103 } ( 8, ·)$$ $$\chi_{ 103 } ( 79, ·)$$ $$\chi_{ 103 } ( 14, ·)$$ $$\chi_{ 103 } ( 23, ·)$$ $$\chi_{ 103 } ( 66, ·)$$ $$\chi_{ 103 } ( 13, ·)$$