Orbit label |
Conrey labels |
Modulus |
Conductor |
Order |
Parity |
Primitive |
17.d |
\(\chi_{17}(2, \cdot)\)$,$ \(\chi_{17}(8, \cdot)\)$,$ \(\chi_{17}(9, \cdot)\)$,$ \(\chi_{17}(15, \cdot)\)
|
$17$ |
$17$ |
$8$ |
even |
✓ |
32.g |
\(\chi_{32}(5, \cdot)\)$,$ \(\chi_{32}(13, \cdot)\)$,$ \(\chi_{32}(21, \cdot)\)$,$ \(\chi_{32}(29, \cdot)\)
|
$32$ |
$32$ |
$8$ |
even |
✓ |
32.h |
\(\chi_{32}(3, \cdot)\)$,$ \(\chi_{32}(11, \cdot)\)$,$ \(\chi_{32}(19, \cdot)\)$,$ \(\chi_{32}(27, \cdot)\)
|
$32$ |
$32$ |
$8$ |
odd |
✓ |
34.d |
\(\chi_{34}(9, \cdot)\)$,$ \(\chi_{34}(15, \cdot)\)$,$ \(\chi_{34}(19, \cdot)\)$,$ \(\chi_{34}(25, \cdot)\)
|
$34$ |
$17$ |
$8$ |
even |
|
41.e |
\(\chi_{41}(3, \cdot)\)$,$ \(\chi_{41}(14, \cdot)\)$,$ \(\chi_{41}(27, \cdot)\)$,$ \(\chi_{41}(38, \cdot)\)
|
$41$ |
$41$ |
$8$ |
odd |
✓ |
51.g |
\(\chi_{51}(2, \cdot)\)$,$ \(\chi_{51}(8, \cdot)\)$,$ \(\chi_{51}(26, \cdot)\)$,$ \(\chi_{51}(32, \cdot)\)
|
$51$ |
$51$ |
$8$ |
odd |
✓ |
51.h |
\(\chi_{51}(19, \cdot)\)$,$ \(\chi_{51}(25, \cdot)\)$,$ \(\chi_{51}(43, \cdot)\)$,$ \(\chi_{51}(49, \cdot)\)
|
$51$ |
$17$ |
$8$ |
even |
|
64.g |
\(\chi_{64}(9, \cdot)\)$,$ \(\chi_{64}(25, \cdot)\)$,$ \(\chi_{64}(41, \cdot)\)$,$ \(\chi_{64}(57, \cdot)\)
|
$64$ |
$32$ |
$8$ |
even |
|
64.h |
\(\chi_{64}(7, \cdot)\)$,$ \(\chi_{64}(23, \cdot)\)$,$ \(\chi_{64}(39, \cdot)\)$,$ \(\chi_{64}(55, \cdot)\)
|
$64$ |
$32$ |
$8$ |
odd |
|
68.g |
\(\chi_{68}(15, \cdot)\)$,$ \(\chi_{68}(19, \cdot)\)$,$ \(\chi_{68}(43, \cdot)\)$,$ \(\chi_{68}(59, \cdot)\)
|
$68$ |
$68$ |
$8$ |
odd |
✓ |
68.h |
\(\chi_{68}(9, \cdot)\)$,$ \(\chi_{68}(25, \cdot)\)$,$ \(\chi_{68}(49, \cdot)\)$,$ \(\chi_{68}(53, \cdot)\)
|
$68$ |
$17$ |
$8$ |
even |
|
73.f |
\(\chi_{73}(10, \cdot)\)$,$ \(\chi_{73}(22, \cdot)\)$,$ \(\chi_{73}(51, \cdot)\)$,$ \(\chi_{73}(63, \cdot)\)
|
$73$ |
$73$ |
$8$ |
odd |
✓ |
82.e |
\(\chi_{82}(3, \cdot)\)$,$ \(\chi_{82}(27, \cdot)\)$,$ \(\chi_{82}(55, \cdot)\)$,$ \(\chi_{82}(79, \cdot)\)
|
$82$ |
$41$ |
$8$ |
odd |
|
85.k |
\(\chi_{85}(2, \cdot)\)$,$ \(\chi_{85}(8, \cdot)\)$,$ \(\chi_{85}(32, \cdot)\)$,$ \(\chi_{85}(43, \cdot)\)
|
$85$ |
$85$ |
$8$ |
odd |
✓ |
85.l |
\(\chi_{85}(26, \cdot)\)$,$ \(\chi_{85}(36, \cdot)\)$,$ \(\chi_{85}(66, \cdot)\)$,$ \(\chi_{85}(76, \cdot)\)
|
$85$ |
$17$ |
$8$ |
even |
|
85.m |
\(\chi_{85}(9, \cdot)\)$,$ \(\chi_{85}(19, \cdot)\)$,$ \(\chi_{85}(49, \cdot)\)$,$ \(\chi_{85}(59, \cdot)\)
|
$85$ |
$85$ |
$8$ |
even |
✓ |
85.n |
\(\chi_{85}(42, \cdot)\)$,$ \(\chi_{85}(53, \cdot)\)$,$ \(\chi_{85}(77, \cdot)\)$,$ \(\chi_{85}(83, \cdot)\)
|
$85$ |
$85$ |
$8$ |
odd |
✓ |
89.d |
\(\chi_{89}(12, \cdot)\)$,$ \(\chi_{89}(37, \cdot)\)$,$ \(\chi_{89}(52, \cdot)\)$,$ \(\chi_{89}(77, \cdot)\)
|
$89$ |
$89$ |
$8$ |
odd |
✓ |
96.m |
\(\chi_{96}(19, \cdot)\)$,$ \(\chi_{96}(43, \cdot)\)$,$ \(\chi_{96}(67, \cdot)\)$,$ \(\chi_{96}(91, \cdot)\)
|
$96$ |
$32$ |
$8$ |
odd |
|
96.n |
\(\chi_{96}(13, \cdot)\)$,$ \(\chi_{96}(37, \cdot)\)$,$ \(\chi_{96}(61, \cdot)\)$,$ \(\chi_{96}(85, \cdot)\)
|
$96$ |
$32$ |
$8$ |
even |
|
96.o |
\(\chi_{96}(11, \cdot)\)$,$ \(\chi_{96}(35, \cdot)\)$,$ \(\chi_{96}(59, \cdot)\)$,$ \(\chi_{96}(83, \cdot)\)
|
$96$ |
$96$ |
$8$ |
even |
✓ |
96.p |
\(\chi_{96}(5, \cdot)\)$,$ \(\chi_{96}(29, \cdot)\)$,$ \(\chi_{96}(53, \cdot)\)$,$ \(\chi_{96}(77, \cdot)\)
|
$96$ |
$96$ |
$8$ |
odd |
✓ |
97.f |
\(\chi_{97}(33, \cdot)\)$,$ \(\chi_{97}(47, \cdot)\)$,$ \(\chi_{97}(50, \cdot)\)$,$ \(\chi_{97}(64, \cdot)\)
|
$97$ |
$97$ |
$8$ |
even |
✓ |
102.g |
\(\chi_{102}(53, \cdot)\)$,$ \(\chi_{102}(59, \cdot)\)$,$ \(\chi_{102}(77, \cdot)\)$,$ \(\chi_{102}(83, \cdot)\)
|
$102$ |
$51$ |
$8$ |
odd |
|
102.h |
\(\chi_{102}(19, \cdot)\)$,$ \(\chi_{102}(25, \cdot)\)$,$ \(\chi_{102}(43, \cdot)\)$,$ \(\chi_{102}(49, \cdot)\)
|
$102$ |
$17$ |
$8$ |
even |
|
113.e |
\(\chi_{113}(18, \cdot)\)$,$ \(\chi_{113}(44, \cdot)\)$,$ \(\chi_{113}(69, \cdot)\)$,$ \(\chi_{113}(95, \cdot)\)
|
$113$ |
$113$ |
$8$ |
even |
✓ |
119.k |
\(\chi_{119}(8, \cdot)\)$,$ \(\chi_{119}(15, \cdot)\)$,$ \(\chi_{119}(36, \cdot)\)$,$ \(\chi_{119}(43, \cdot)\)
|
$119$ |
$17$ |
$8$ |
even |
|
119.l |
\(\chi_{119}(76, \cdot)\)$,$ \(\chi_{119}(83, \cdot)\)$,$ \(\chi_{119}(104, \cdot)\)$,$ \(\chi_{119}(111, \cdot)\)
|
$119$ |
$119$ |
$8$ |
odd |
✓ |
123.h |
\(\chi_{123}(55, \cdot)\)$,$ \(\chi_{123}(79, \cdot)\)$,$ \(\chi_{123}(85, \cdot)\)$,$ \(\chi_{123}(109, \cdot)\)
|
$123$ |
$41$ |
$8$ |
odd |
|
123.i |
\(\chi_{123}(14, \cdot)\)$,$ \(\chi_{123}(38, \cdot)\)$,$ \(\chi_{123}(44, \cdot)\)$,$ \(\chi_{123}(68, \cdot)\)
|
$123$ |
$123$ |
$8$ |
even |
✓ |
128.g |
\(\chi_{128}(17, \cdot)\)$,$ \(\chi_{128}(49, \cdot)\)$,$ \(\chi_{128}(81, \cdot)\)$,$ \(\chi_{128}(113, \cdot)\)
|
$128$ |
$32$ |
$8$ |
even |
|
128.h |
\(\chi_{128}(15, \cdot)\)$,$ \(\chi_{128}(47, \cdot)\)$,$ \(\chi_{128}(79, \cdot)\)$,$ \(\chi_{128}(111, \cdot)\)
|
$128$ |
$32$ |
$8$ |
odd |
|
136.m |
\(\chi_{136}(15, \cdot)\)$,$ \(\chi_{136}(87, \cdot)\)$,$ \(\chi_{136}(111, \cdot)\)$,$ \(\chi_{136}(127, \cdot)\)
|
$136$ |
$68$ |
$8$ |
odd |
|
136.n |
\(\chi_{136}(9, \cdot)\)$,$ \(\chi_{136}(25, \cdot)\)$,$ \(\chi_{136}(49, \cdot)\)$,$ \(\chi_{136}(121, \cdot)\)
|
$136$ |
$17$ |
$8$ |
even |
|
136.o |
\(\chi_{136}(53, \cdot)\)$,$ \(\chi_{136}(77, \cdot)\)$,$ \(\chi_{136}(93, \cdot)\)$,$ \(\chi_{136}(117, \cdot)\)
|
$136$ |
$136$ |
$8$ |
even |
✓ |
136.p |
\(\chi_{136}(19, \cdot)\)$,$ \(\chi_{136}(43, \cdot)\)$,$ \(\chi_{136}(59, \cdot)\)$,$ \(\chi_{136}(83, \cdot)\)
|
$136$ |
$136$ |
$8$ |
odd |
✓ |
137.d |
\(\chi_{137}(10, \cdot)\)$,$ \(\chi_{137}(41, \cdot)\)$,$ \(\chi_{137}(96, \cdot)\)$,$ \(\chi_{137}(127, \cdot)\)
|
$137$ |
$137$ |
$8$ |
odd |
✓ |
146.f |
\(\chi_{146}(51, \cdot)\)$,$ \(\chi_{146}(63, \cdot)\)$,$ \(\chi_{146}(83, \cdot)\)$,$ \(\chi_{146}(95, \cdot)\)
|
$146$ |
$73$ |
$8$ |
odd |
|
153.k |
\(\chi_{153}(8, \cdot)\)$,$ \(\chi_{153}(26, \cdot)\)$,$ \(\chi_{153}(53, \cdot)\)$,$ \(\chi_{153}(134, \cdot)\)
|
$153$ |
$51$ |
$8$ |
odd |
|
153.l |
\(\chi_{153}(19, \cdot)\)$,$ \(\chi_{153}(100, \cdot)\)$,$ \(\chi_{153}(127, \cdot)\)$,$ \(\chi_{153}(145, \cdot)\)
|
$153$ |
$17$ |
$8$ |
even |
|
160.u |
\(\chi_{160}(43, \cdot)\)$,$ \(\chi_{160}(67, \cdot)\)$,$ \(\chi_{160}(123, \cdot)\)$,$ \(\chi_{160}(147, \cdot)\)
|
$160$ |
$160$ |
$8$ |
even |
✓ |
160.v |
\(\chi_{160}(13, \cdot)\)$,$ \(\chi_{160}(37, \cdot)\)$,$ \(\chi_{160}(93, \cdot)\)$,$ \(\chi_{160}(117, \cdot)\)
|
$160$ |
$160$ |
$8$ |
odd |
✓ |
160.w |
\(\chi_{160}(11, \cdot)\)$,$ \(\chi_{160}(51, \cdot)\)$,$ \(\chi_{160}(91, \cdot)\)$,$ \(\chi_{160}(131, \cdot)\)
|
$160$ |
$32$ |
$8$ |
odd |
|
160.x |
\(\chi_{160}(21, \cdot)\)$,$ \(\chi_{160}(61, \cdot)\)$,$ \(\chi_{160}(101, \cdot)\)$,$ \(\chi_{160}(141, \cdot)\)
|
$160$ |
$32$ |
$8$ |
even |
|
160.y |
\(\chi_{160}(19, \cdot)\)$,$ \(\chi_{160}(59, \cdot)\)$,$ \(\chi_{160}(99, \cdot)\)$,$ \(\chi_{160}(139, \cdot)\)
|
$160$ |
$160$ |
$8$ |
odd |
✓ |
160.z |
\(\chi_{160}(29, \cdot)\)$,$ \(\chi_{160}(69, \cdot)\)$,$ \(\chi_{160}(109, \cdot)\)$,$ \(\chi_{160}(149, \cdot)\)
|
$160$ |
$160$ |
$8$ |
even |
✓ |
160.ba |
\(\chi_{160}(3, \cdot)\)$,$ \(\chi_{160}(27, \cdot)\)$,$ \(\chi_{160}(83, \cdot)\)$,$ \(\chi_{160}(107, \cdot)\)
|
$160$ |
$160$ |
$8$ |
even |
✓ |
160.bb |
\(\chi_{160}(53, \cdot)\)$,$ \(\chi_{160}(77, \cdot)\)$,$ \(\chi_{160}(133, \cdot)\)$,$ \(\chi_{160}(157, \cdot)\)
|
$160$ |
$160$ |
$8$ |
odd |
✓ |
164.h |
\(\chi_{164}(85, \cdot)\)$,$ \(\chi_{164}(109, \cdot)\)$,$ \(\chi_{164}(137, \cdot)\)$,$ \(\chi_{164}(161, \cdot)\)
|
$164$ |
$41$ |
$8$ |
odd |
|
164.i |
\(\chi_{164}(3, \cdot)\)$,$ \(\chi_{164}(27, \cdot)\)$,$ \(\chi_{164}(55, \cdot)\)$,$ \(\chi_{164}(79, \cdot)\)
|
$164$ |
$164$ |
$8$ |
even |
✓ |