Orbit label |
Conrey labels |
Modulus |
Conductor |
Order |
Parity |
Primitive |
13.f |
\(\chi_{13}(2, \cdot)\)$, \cdots ,$\(\chi_{13}(11, \cdot)\)
|
$13$ |
$13$ |
$12$ |
odd |
✓ |
26.f |
\(\chi_{26}(7, \cdot)\)$, \cdots ,$\(\chi_{26}(19, \cdot)\)
|
$26$ |
$13$ |
$12$ |
odd |
|
35.k |
\(\chi_{35}(3, \cdot)\)$, \cdots ,$\(\chi_{35}(33, \cdot)\)
|
$35$ |
$35$ |
$12$ |
even |
✓ |
35.l |
\(\chi_{35}(2, \cdot)\)$, \cdots ,$\(\chi_{35}(32, \cdot)\)
|
$35$ |
$35$ |
$12$ |
odd |
✓ |
37.g |
\(\chi_{37}(8, \cdot)\)$, \cdots ,$\(\chi_{37}(29, \cdot)\)
|
$37$ |
$37$ |
$12$ |
odd |
✓ |
39.k |
\(\chi_{39}(2, \cdot)\)$, \cdots ,$\(\chi_{39}(32, \cdot)\)
|
$39$ |
$39$ |
$12$ |
even |
✓ |
39.l |
\(\chi_{39}(7, \cdot)\)$, \cdots ,$\(\chi_{39}(37, \cdot)\)
|
$39$ |
$13$ |
$12$ |
odd |
|
45.k |
\(\chi_{45}(7, \cdot)\)$, \cdots ,$\(\chi_{45}(43, \cdot)\)
|
$45$ |
$45$ |
$12$ |
odd |
✓ |
45.l |
\(\chi_{45}(2, \cdot)\)$, \cdots ,$\(\chi_{45}(38, \cdot)\)
|
$45$ |
$45$ |
$12$ |
even |
✓ |
52.k |
\(\chi_{52}(33, \cdot)\)$, \cdots ,$\(\chi_{52}(45, \cdot)\)
|
$52$ |
$13$ |
$12$ |
odd |
|
52.l |
\(\chi_{52}(7, \cdot)\)$, \cdots ,$\(\chi_{52}(19, \cdot)\)
|
$52$ |
$52$ |
$12$ |
even |
✓ |
61.h |
\(\chi_{61}(21, \cdot)\)$, \cdots ,$\(\chi_{61}(40, \cdot)\)
|
$61$ |
$61$ |
$12$ |
odd |
✓ |
65.o |
\(\chi_{65}(2, \cdot)\)$, \cdots ,$\(\chi_{65}(63, \cdot)\)
|
$65$ |
$65$ |
$12$ |
even |
✓ |
65.p |
\(\chi_{65}(6, \cdot)\)$, \cdots ,$\(\chi_{65}(46, \cdot)\)
|
$65$ |
$13$ |
$12$ |
odd |
|
65.q |
\(\chi_{65}(3, \cdot)\)$, \cdots ,$\(\chi_{65}(48, \cdot)\)
|
$65$ |
$65$ |
$12$ |
odd |
✓ |
65.r |
\(\chi_{65}(17, \cdot)\)$, \cdots ,$\(\chi_{65}(62, \cdot)\)
|
$65$ |
$65$ |
$12$ |
odd |
✓ |
65.s |
\(\chi_{65}(19, \cdot)\)$, \cdots ,$\(\chi_{65}(59, \cdot)\)
|
$65$ |
$65$ |
$12$ |
odd |
✓ |
65.t |
\(\chi_{65}(7, \cdot)\)$, \cdots ,$\(\chi_{65}(58, \cdot)\)
|
$65$ |
$65$ |
$12$ |
even |
✓ |
70.k |
\(\chi_{70}(3, \cdot)\)$, \cdots ,$\(\chi_{70}(47, \cdot)\)
|
$70$ |
$35$ |
$12$ |
even |
|
70.l |
\(\chi_{70}(23, \cdot)\)$, \cdots ,$\(\chi_{70}(67, \cdot)\)
|
$70$ |
$35$ |
$12$ |
odd |
|
73.h |
\(\chi_{73}(3, \cdot)\)$, \cdots ,$\(\chi_{73}(70, \cdot)\)
|
$73$ |
$73$ |
$12$ |
even |
✓ |
74.g |
\(\chi_{74}(23, \cdot)\)$, \cdots ,$\(\chi_{74}(51, \cdot)\)
|
$74$ |
$37$ |
$12$ |
odd |
|
78.k |
\(\chi_{78}(11, \cdot)\)$, \cdots ,$\(\chi_{78}(71, \cdot)\)
|
$78$ |
$39$ |
$12$ |
even |
|
78.l |
\(\chi_{78}(7, \cdot)\)$, \cdots ,$\(\chi_{78}(67, \cdot)\)
|
$78$ |
$13$ |
$12$ |
odd |
|
90.k |
\(\chi_{90}(7, \cdot)\)$, \cdots ,$\(\chi_{90}(67, \cdot)\)
|
$90$ |
$45$ |
$12$ |
odd |
|
90.l |
\(\chi_{90}(23, \cdot)\)$, \cdots ,$\(\chi_{90}(83, \cdot)\)
|
$90$ |
$45$ |
$12$ |
even |
|
91.w |
\(\chi_{91}(19, \cdot)\)$, \cdots ,$\(\chi_{91}(80, \cdot)\)
|
$91$ |
$91$ |
$12$ |
even |
✓ |
91.x |
\(\chi_{91}(2, \cdot)\)$, \cdots ,$\(\chi_{91}(46, \cdot)\)
|
$91$ |
$91$ |
$12$ |
odd |
✓ |
91.y |
\(\chi_{91}(15, \cdot)\)$, \cdots ,$\(\chi_{91}(85, \cdot)\)
|
$91$ |
$13$ |
$12$ |
odd |
|
91.z |
\(\chi_{91}(18, \cdot)\)$, \cdots ,$\(\chi_{91}(86, \cdot)\)
|
$91$ |
$91$ |
$12$ |
odd |
✓ |
91.ba |
\(\chi_{91}(45, \cdot)\)$, \cdots ,$\(\chi_{91}(89, \cdot)\)
|
$91$ |
$91$ |
$12$ |
even |
✓ |
91.bb |
\(\chi_{91}(5, \cdot)\)$, \cdots ,$\(\chi_{91}(73, \cdot)\)
|
$91$ |
$91$ |
$12$ |
even |
✓ |
91.bc |
\(\chi_{91}(6, \cdot)\)$, \cdots ,$\(\chi_{91}(76, \cdot)\)
|
$91$ |
$91$ |
$12$ |
even |
✓ |
91.bd |
\(\chi_{91}(11, \cdot)\)$, \cdots ,$\(\chi_{91}(72, \cdot)\)
|
$91$ |
$91$ |
$12$ |
odd |
✓ |
95.l |
\(\chi_{95}(8, \cdot)\)$, \cdots ,$\(\chi_{95}(88, \cdot)\)
|
$95$ |
$95$ |
$12$ |
even |
✓ |
95.m |
\(\chi_{95}(7, \cdot)\)$, \cdots ,$\(\chi_{95}(87, \cdot)\)
|
$95$ |
$95$ |
$12$ |
odd |
✓ |
97.g |
\(\chi_{97}(6, \cdot)\)$, \cdots ,$\(\chi_{97}(91, \cdot)\)
|
$97$ |
$97$ |
$12$ |
even |
✓ |
104.u |
\(\chi_{104}(11, \cdot)\)$, \cdots ,$\(\chi_{104}(67, \cdot)\)
|
$104$ |
$104$ |
$12$ |
even |
✓ |
104.v |
\(\chi_{104}(33, \cdot)\)$, \cdots ,$\(\chi_{104}(97, \cdot)\)
|
$104$ |
$13$ |
$12$ |
odd |
|
104.w |
\(\chi_{104}(7, \cdot)\)$, \cdots ,$\(\chi_{104}(71, \cdot)\)
|
$104$ |
$52$ |
$12$ |
even |
|
104.x |
\(\chi_{104}(37, \cdot)\)$, \cdots ,$\(\chi_{104}(93, \cdot)\)
|
$104$ |
$104$ |
$12$ |
odd |
✓ |
105.u |
\(\chi_{105}(52, \cdot)\)$, \cdots ,$\(\chi_{105}(103, \cdot)\)
|
$105$ |
$35$ |
$12$ |
even |
|
105.v |
\(\chi_{105}(37, \cdot)\)$, \cdots ,$\(\chi_{105}(88, \cdot)\)
|
$105$ |
$35$ |
$12$ |
odd |
|
105.w |
\(\chi_{105}(17, \cdot)\)$, \cdots ,$\(\chi_{105}(68, \cdot)\)
|
$105$ |
$105$ |
$12$ |
odd |
✓ |
105.x |
\(\chi_{105}(2, \cdot)\)$, \cdots ,$\(\chi_{105}(53, \cdot)\)
|
$105$ |
$105$ |
$12$ |
even |
✓ |
109.g |
\(\chi_{109}(8, \cdot)\)$, \cdots ,$\(\chi_{109}(101, \cdot)\)
|
$109$ |
$109$ |
$12$ |
odd |
✓ |
111.l |
\(\chi_{111}(82, \cdot)\)$, \cdots ,$\(\chi_{111}(103, \cdot)\)
|
$111$ |
$37$ |
$12$ |
odd |
|
111.m |
\(\chi_{111}(8, \cdot)\)$, \cdots ,$\(\chi_{111}(29, \cdot)\)
|
$111$ |
$111$ |
$12$ |
even |
✓ |
112.u |
\(\chi_{112}(11, \cdot)\)$, \cdots ,$\(\chi_{112}(107, \cdot)\)
|
$112$ |
$112$ |
$12$ |
odd |
✓ |
112.v |
\(\chi_{112}(3, \cdot)\)$, \cdots ,$\(\chi_{112}(75, \cdot)\)
|
$112$ |
$112$ |
$12$ |
even |
✓ |