Learn more about

Refine search


Results (1-50 of at least 1000)

Next
Conrey label Orbit label Modulus Conductor Order Parity Primitive
\(\chi_{ 23 }(2, \cdot)\)  $\vdots$  \(\chi_{ 23 }(18, \cdot)\) 23.c $23$ $23$ $11$ even
\(\chi_{ 46 }(3, \cdot)\)  $\vdots$  \(\chi_{ 46 }(41, \cdot)\) 46.c $46$ $23$ $11$ even
\(\chi_{ 67 }(9, \cdot)\)  $\vdots$  \(\chi_{ 67 }(64, \cdot)\) 67.e $67$ $67$ $11$ even
\(\chi_{ 69 }(4, \cdot)\)  $\vdots$  \(\chi_{ 69 }(64, \cdot)\) 69.e $69$ $23$ $11$ even
\(\chi_{ 89 }(2, \cdot)\)  $\vdots$  \(\chi_{ 89 }(78, \cdot)\) 89.e $89$ $89$ $11$ even
\(\chi_{ 92 }(9, \cdot)\)  $\vdots$  \(\chi_{ 92 }(85, \cdot)\) 92.e $92$ $23$ $11$ even
\(\chi_{ 115 }(6, \cdot)\)  $\vdots$  \(\chi_{ 115 }(101, \cdot)\) 115.g $115$ $23$ $11$ even
\(\chi_{ 121 }(12, \cdot)\)  $\vdots$  \(\chi_{ 121 }(111, \cdot)\) 121.e $121$ $121$ $11$ even
\(\chi_{ 134 }(9, \cdot)\)  $\vdots$  \(\chi_{ 134 }(131, \cdot)\) 134.e $134$ $67$ $11$ even
\(\chi_{ 138 }(13, \cdot)\)  $\vdots$  \(\chi_{ 138 }(133, \cdot)\) 138.e $138$ $23$ $11$ even
\(\chi_{ 161 }(8, \cdot)\)  $\vdots$  \(\chi_{ 161 }(141, \cdot)\) 161.i $161$ $23$ $11$ even
\(\chi_{ 178 }(39, \cdot)\)  $\vdots$  \(\chi_{ 178 }(167, \cdot)\) 178.e $178$ $89$ $11$ even
\(\chi_{ 184 }(9, \cdot)\)  $\vdots$  \(\chi_{ 184 }(177, \cdot)\) 184.i $184$ $23$ $11$ even
\(\chi_{ 199 }(18, \cdot)\)  $\vdots$  \(\chi_{ 199 }(188, \cdot)\) 199.f $199$ $199$ $11$ even
\(\chi_{ 201 }(22, \cdot)\)  $\vdots$  \(\chi_{ 201 }(196, \cdot)\) 201.i $201$ $67$ $11$ even
\(\chi_{ 207 }(55, \cdot)\)  $\vdots$  \(\chi_{ 207 }(190, \cdot)\) 207.i $207$ $23$ $11$ even
\(\chi_{ 230 }(31, \cdot)\)  $\vdots$  \(\chi_{ 230 }(211, \cdot)\) 230.g $230$ $23$ $11$ even
\(\chi_{ 242 }(23, \cdot)\)  $\vdots$  \(\chi_{ 242 }(221, \cdot)\) 242.e $242$ $121$ $11$ even
\(\chi_{ 253 }(12, \cdot)\)  $\vdots$  \(\chi_{ 253 }(243, \cdot)\) 253.i $253$ $23$ $11$ even
\(\chi_{ 267 }(4, \cdot)\)  $\vdots$  \(\chi_{ 267 }(256, \cdot)\) 267.i $267$ $89$ $11$ even
\(\chi_{ 268 }(9, \cdot)\)  $\vdots$  \(\chi_{ 268 }(265, \cdot)\) 268.i $268$ $67$ $11$ even
\(\chi_{ 276 }(13, \cdot)\)  $\vdots$  \(\chi_{ 276 }(265, \cdot)\) 276.i $276$ $23$ $11$ even
\(\chi_{ 299 }(27, \cdot)\)  $\vdots$  \(\chi_{ 299 }(261, \cdot)\) 299.k $299$ $23$ $11$ even
\(\chi_{ 322 }(29, \cdot)\)  $\vdots$  \(\chi_{ 322 }(239, \cdot)\) 322.i $322$ $23$ $11$ even
\(\chi_{ 331 }(74, \cdot)\)  $\vdots$  \(\chi_{ 331 }(293, \cdot)\) 331.g $331$ $331$ $11$ even
\(\chi_{ 335 }(76, \cdot)\)  $\vdots$  \(\chi_{ 335 }(241, \cdot)\) 335.k $335$ $67$ $11$ even
\(\chi_{ 345 }(16, \cdot)\)  $\vdots$  \(\chi_{ 345 }(331, \cdot)\) 345.m $345$ $23$ $11$ even
\(\chi_{ 353 }(22, \cdot)\)  $\vdots$  \(\chi_{ 353 }(337, \cdot)\) 353.e $353$ $353$ $11$ even
\(\chi_{ 356 }(45, \cdot)\)  $\vdots$  \(\chi_{ 356 }(345, \cdot)\) 356.i $356$ $89$ $11$ even
\(\chi_{ 363 }(34, \cdot)\)  $\vdots$  \(\chi_{ 363 }(331, \cdot)\) 363.i $363$ $121$ $11$ even
\(\chi_{ 368 }(49, \cdot)\)  $\vdots$  \(\chi_{ 368 }(353, \cdot)\) 368.m $368$ $23$ $11$ even
\(\chi_{ 391 }(18, \cdot)\)  $\vdots$  \(\chi_{ 391 }(358, \cdot)\) 391.i $391$ $23$ $11$ even
\(\chi_{ 397 }(16, \cdot)\)  $\vdots$  \(\chi_{ 397 }(393, \cdot)\) 397.g $397$ $397$ $11$ even
\(\chi_{ 398 }(61, \cdot)\)  $\vdots$  \(\chi_{ 398 }(387, \cdot)\) 398.f $398$ $199$ $11$ even
\(\chi_{ 402 }(25, \cdot)\)  $\vdots$  \(\chi_{ 402 }(397, \cdot)\) 402.i $402$ $67$ $11$ even
\(\chi_{ 414 }(55, \cdot)\)  $\vdots$  \(\chi_{ 414 }(397, \cdot)\) 414.i $414$ $23$ $11$ even
\(\chi_{ 419 }(13, \cdot)\)  $\vdots$  \(\chi_{ 419 }(348, \cdot)\) 419.c $419$ $419$ $11$ even
\(\chi_{ 437 }(39, \cdot)\)  $\vdots$  \(\chi_{ 437 }(400, \cdot)\) 437.j $437$ $23$ $11$ even
\(\chi_{ 445 }(16, \cdot)\)  $\vdots$  \(\chi_{ 445 }(401, \cdot)\) 445.o $445$ $89$ $11$ even
\(\chi_{ 460 }(41, \cdot)\)  $\vdots$  \(\chi_{ 460 }(441, \cdot)\) 460.m $460$ $23$ $11$ even
\(\chi_{ 463 }(15, \cdot)\)  $\vdots$  \(\chi_{ 463 }(425, \cdot)\) 463.f $463$ $463$ $11$ even
\(\chi_{ 469 }(15, \cdot)\)  $\vdots$  \(\chi_{ 469 }(442, \cdot)\) 469.u $469$ $67$ $11$ even
\(\chi_{ 483 }(64, \cdot)\)  $\vdots$  \(\chi_{ 483 }(463, \cdot)\) 483.q $483$ $23$ $11$ even
\(\chi_{ 484 }(45, \cdot)\)  $\vdots$  \(\chi_{ 484 }(441, \cdot)\) 484.i $484$ $121$ $11$ even
\(\chi_{ 506 }(133, \cdot)\)  $\vdots$  \(\chi_{ 506 }(485, \cdot)\) 506.i $506$ $23$ $11$ even
\(\chi_{ 529 }(118, \cdot)\)  $\vdots$  \(\chi_{ 529 }(501, \cdot)\) 529.c $529$ $23$ $11$ even
\(\chi_{ 534 }(67, \cdot)\)  $\vdots$  \(\chi_{ 534 }(523, \cdot)\) 534.i $534$ $89$ $11$ even
\(\chi_{ 536 }(9, \cdot)\)  $\vdots$  \(\chi_{ 536 }(417, \cdot)\) 536.q $536$ $67$ $11$ even
\(\chi_{ 552 }(25, \cdot)\)  $\vdots$  \(\chi_{ 552 }(409, \cdot)\) 552.q $552$ $23$ $11$ even
\(\chi_{ 575 }(26, \cdot)\)  $\vdots$  \(\chi_{ 575 }(501, \cdot)\) 575.k $575$ $23$ $11$ even
Next