Learn more

Refine search


Results (1-50 of at least 1000)

Next
Orbit label Conrey labels Modulus Conductor Order Parity Primitive
11.d

\(\chi_{11}(2, \cdot)\)$,$ \(\chi_{11}(6, \cdot)\)$,$ \(\chi_{11}(7, \cdot)\)$,$ \(\chi_{11}(8, \cdot)\)

$11$ $11$ $10$ odd
22.d

\(\chi_{22}(7, \cdot)\)$,$ \(\chi_{22}(13, \cdot)\)$,$ \(\chi_{22}(17, \cdot)\)$,$ \(\chi_{22}(19, \cdot)\)

$22$ $11$ $10$ odd
25.e

\(\chi_{25}(4, \cdot)\)$,$ \(\chi_{25}(9, \cdot)\)$,$ \(\chi_{25}(14, \cdot)\)$,$ \(\chi_{25}(19, \cdot)\)

$25$ $25$ $10$ even
31.f

\(\chi_{31}(15, \cdot)\)$,$ \(\chi_{31}(23, \cdot)\)$,$ \(\chi_{31}(27, \cdot)\)$,$ \(\chi_{31}(29, \cdot)\)

$31$ $31$ $10$ odd
33.f

\(\chi_{33}(2, \cdot)\)$,$ \(\chi_{33}(8, \cdot)\)$,$ \(\chi_{33}(17, \cdot)\)$,$ \(\chi_{33}(29, \cdot)\)

$33$ $33$ $10$ even
33.g

\(\chi_{33}(7, \cdot)\)$,$ \(\chi_{33}(13, \cdot)\)$,$ \(\chi_{33}(19, \cdot)\)$,$ \(\chi_{33}(28, \cdot)\)

$33$ $11$ $10$ odd
33.h

\(\chi_{33}(5, \cdot)\)$,$ \(\chi_{33}(14, \cdot)\)$,$ \(\chi_{33}(20, \cdot)\)$,$ \(\chi_{33}(26, \cdot)\)

$33$ $33$ $10$ odd
41.f

\(\chi_{41}(4, \cdot)\)$,$ \(\chi_{41}(23, \cdot)\)$,$ \(\chi_{41}(25, \cdot)\)$,$ \(\chi_{41}(31, \cdot)\)

$41$ $41$ $10$ even
44.f

\(\chi_{44}(13, \cdot)\)$,$ \(\chi_{44}(17, \cdot)\)$,$ \(\chi_{44}(29, \cdot)\)$,$ \(\chi_{44}(41, \cdot)\)

$44$ $11$ $10$ odd
44.g

\(\chi_{44}(7, \cdot)\)$,$ \(\chi_{44}(19, \cdot)\)$,$ \(\chi_{44}(35, \cdot)\)$,$ \(\chi_{44}(39, \cdot)\)

$44$ $44$ $10$ even
44.h

\(\chi_{44}(3, \cdot)\)$,$ \(\chi_{44}(15, \cdot)\)$,$ \(\chi_{44}(27, \cdot)\)$,$ \(\chi_{44}(31, \cdot)\)

$44$ $44$ $10$ odd
50.e

\(\chi_{50}(9, \cdot)\)$,$ \(\chi_{50}(19, \cdot)\)$,$ \(\chi_{50}(29, \cdot)\)$,$ \(\chi_{50}(39, \cdot)\)

$50$ $25$ $10$ even
55.h

\(\chi_{55}(19, \cdot)\)$,$ \(\chi_{55}(24, \cdot)\)$,$ \(\chi_{55}(29, \cdot)\)$,$ \(\chi_{55}(39, \cdot)\)

$55$ $55$ $10$ odd
55.i

\(\chi_{55}(6, \cdot)\)$,$ \(\chi_{55}(41, \cdot)\)$,$ \(\chi_{55}(46, \cdot)\)$,$ \(\chi_{55}(51, \cdot)\)

$55$ $11$ $10$ odd
55.j

\(\chi_{55}(4, \cdot)\)$,$ \(\chi_{55}(9, \cdot)\)$,$ \(\chi_{55}(14, \cdot)\)$,$ \(\chi_{55}(49, \cdot)\)

$55$ $55$ $10$ even
61.g

\(\chi_{61}(3, \cdot)\)$,$ \(\chi_{61}(27, \cdot)\)$,$ \(\chi_{61}(41, \cdot)\)$,$ \(\chi_{61}(52, \cdot)\)

$61$ $61$ $10$ even
62.f

\(\chi_{62}(15, \cdot)\)$,$ \(\chi_{62}(23, \cdot)\)$,$ \(\chi_{62}(27, \cdot)\)$,$ \(\chi_{62}(29, \cdot)\)

$62$ $31$ $10$ odd
66.f

\(\chi_{66}(7, \cdot)\)$,$ \(\chi_{66}(13, \cdot)\)$,$ \(\chi_{66}(19, \cdot)\)$,$ \(\chi_{66}(61, \cdot)\)

$66$ $11$ $10$ odd
66.g

\(\chi_{66}(5, \cdot)\)$,$ \(\chi_{66}(47, \cdot)\)$,$ \(\chi_{66}(53, \cdot)\)$,$ \(\chi_{66}(59, \cdot)\)

$66$ $33$ $10$ odd
66.h

\(\chi_{66}(17, \cdot)\)$,$ \(\chi_{66}(29, \cdot)\)$,$ \(\chi_{66}(35, \cdot)\)$,$ \(\chi_{66}(41, \cdot)\)

$66$ $33$ $10$ even
71.e

\(\chi_{71}(14, \cdot)\)$,$ \(\chi_{71}(17, \cdot)\)$,$ \(\chi_{71}(46, \cdot)\)$,$ \(\chi_{71}(66, \cdot)\)

$71$ $71$ $10$ odd
75.h

\(\chi_{75}(14, \cdot)\)$,$ \(\chi_{75}(29, \cdot)\)$,$ \(\chi_{75}(44, \cdot)\)$,$ \(\chi_{75}(59, \cdot)\)

$75$ $75$ $10$ odd
75.i

\(\chi_{75}(4, \cdot)\)$,$ \(\chi_{75}(19, \cdot)\)$,$ \(\chi_{75}(34, \cdot)\)$,$ \(\chi_{75}(64, \cdot)\)

$75$ $25$ $10$ even
75.j

\(\chi_{75}(11, \cdot)\)$,$ \(\chi_{75}(41, \cdot)\)$,$ \(\chi_{75}(56, \cdot)\)$,$ \(\chi_{75}(71, \cdot)\)

$75$ $75$ $10$ odd
77.j

\(\chi_{77}(20, \cdot)\)$,$ \(\chi_{77}(27, \cdot)\)$,$ \(\chi_{77}(48, \cdot)\)$,$ \(\chi_{77}(69, \cdot)\)

$77$ $77$ $10$ odd
77.k

\(\chi_{77}(8, \cdot)\)$,$ \(\chi_{77}(29, \cdot)\)$,$ \(\chi_{77}(50, \cdot)\)$,$ \(\chi_{77}(57, \cdot)\)

$77$ $11$ $10$ odd
77.l

\(\chi_{77}(6, \cdot)\)$,$ \(\chi_{77}(13, \cdot)\)$,$ \(\chi_{77}(41, \cdot)\)$,$ \(\chi_{77}(62, \cdot)\)

$77$ $77$ $10$ even
82.f

\(\chi_{82}(23, \cdot)\)$,$ \(\chi_{82}(25, \cdot)\)$,$ \(\chi_{82}(31, \cdot)\)$,$ \(\chi_{82}(45, \cdot)\)

$82$ $41$ $10$ even
88.j

\(\chi_{88}(17, \cdot)\)$,$ \(\chi_{88}(41, \cdot)\)$,$ \(\chi_{88}(57, \cdot)\)$,$ \(\chi_{88}(73, \cdot)\)

$88$ $11$ $10$ odd
88.k

\(\chi_{88}(19, \cdot)\)$,$ \(\chi_{88}(35, \cdot)\)$,$ \(\chi_{88}(51, \cdot)\)$,$ \(\chi_{88}(83, \cdot)\)

$88$ $88$ $10$ even
88.l

\(\chi_{88}(3, \cdot)\)$,$ \(\chi_{88}(27, \cdot)\)$,$ \(\chi_{88}(59, \cdot)\)$,$ \(\chi_{88}(75, \cdot)\)

$88$ $88$ $10$ odd
88.m

\(\chi_{88}(7, \cdot)\)$,$ \(\chi_{88}(39, \cdot)\)$,$ \(\chi_{88}(63, \cdot)\)$,$ \(\chi_{88}(79, \cdot)\)

$88$ $44$ $10$ even
88.n

\(\chi_{88}(15, \cdot)\)$,$ \(\chi_{88}(31, \cdot)\)$,$ \(\chi_{88}(47, \cdot)\)$,$ \(\chi_{88}(71, \cdot)\)

$88$ $44$ $10$ odd
88.o

\(\chi_{88}(5, \cdot)\)$,$ \(\chi_{88}(37, \cdot)\)$,$ \(\chi_{88}(53, \cdot)\)$,$ \(\chi_{88}(69, \cdot)\)

$88$ $88$ $10$ even
88.p

\(\chi_{88}(13, \cdot)\)$,$ \(\chi_{88}(29, \cdot)\)$,$ \(\chi_{88}(61, \cdot)\)$,$ \(\chi_{88}(85, \cdot)\)

$88$ $88$ $10$ odd
93.j

\(\chi_{93}(46, \cdot)\)$,$ \(\chi_{93}(58, \cdot)\)$,$ \(\chi_{93}(85, \cdot)\)$,$ \(\chi_{93}(91, \cdot)\)

$93$ $31$ $10$ odd
93.k

\(\chi_{93}(23, \cdot)\)$,$ \(\chi_{93}(29, \cdot)\)$,$ \(\chi_{93}(77, \cdot)\)$,$ \(\chi_{93}(89, \cdot)\)

$93$ $93$ $10$ even
93.l

\(\chi_{93}(2, \cdot)\)$,$ \(\chi_{93}(8, \cdot)\)$,$ \(\chi_{93}(35, \cdot)\)$,$ \(\chi_{93}(47, \cdot)\)

$93$ $93$ $10$ odd
99.j

\(\chi_{99}(8, \cdot)\)$,$ \(\chi_{99}(17, \cdot)\)$,$ \(\chi_{99}(35, \cdot)\)$,$ \(\chi_{99}(62, \cdot)\)

$99$ $33$ $10$ even
99.k

\(\chi_{99}(19, \cdot)\)$,$ \(\chi_{99}(28, \cdot)\)$,$ \(\chi_{99}(46, \cdot)\)$,$ \(\chi_{99}(73, \cdot)\)

$99$ $11$ $10$ odd
99.l

\(\chi_{99}(26, \cdot)\)$,$ \(\chi_{99}(53, \cdot)\)$,$ \(\chi_{99}(71, \cdot)\)$,$ \(\chi_{99}(80, \cdot)\)

$99$ $33$ $10$ odd
100.h

\(\chi_{100}(19, \cdot)\)$,$ \(\chi_{100}(39, \cdot)\)$,$ \(\chi_{100}(59, \cdot)\)$,$ \(\chi_{100}(79, \cdot)\)

$100$ $100$ $10$ odd
100.i

\(\chi_{100}(9, \cdot)\)$,$ \(\chi_{100}(29, \cdot)\)$,$ \(\chi_{100}(69, \cdot)\)$,$ \(\chi_{100}(89, \cdot)\)

$100$ $25$ $10$ even
100.j

\(\chi_{100}(11, \cdot)\)$,$ \(\chi_{100}(31, \cdot)\)$,$ \(\chi_{100}(71, \cdot)\)$,$ \(\chi_{100}(91, \cdot)\)

$100$ $100$ $10$ odd
101.e

\(\chi_{101}(6, \cdot)\)$,$ \(\chi_{101}(14, \cdot)\)$,$ \(\chi_{101}(17, \cdot)\)$,$ \(\chi_{101}(65, \cdot)\)

$101$ $101$ $10$ even
110.h

\(\chi_{110}(41, \cdot)\)$,$ \(\chi_{110}(51, \cdot)\)$,$ \(\chi_{110}(61, \cdot)\)$,$ \(\chi_{110}(101, \cdot)\)

$110$ $11$ $10$ odd
110.i

\(\chi_{110}(19, \cdot)\)$,$ \(\chi_{110}(29, \cdot)\)$,$ \(\chi_{110}(39, \cdot)\)$,$ \(\chi_{110}(79, \cdot)\)

$110$ $55$ $10$ odd
110.j

\(\chi_{110}(9, \cdot)\)$,$ \(\chi_{110}(49, \cdot)\)$,$ \(\chi_{110}(59, \cdot)\)$,$ \(\chi_{110}(69, \cdot)\)

$110$ $55$ $10$ even
121.d

\(\chi_{121}(40, \cdot)\)$,$ \(\chi_{121}(94, \cdot)\)$,$ \(\chi_{121}(112, \cdot)\)$,$ \(\chi_{121}(118, \cdot)\)

$121$ $11$ $10$ odd
122.g

\(\chi_{122}(3, \cdot)\)$,$ \(\chi_{122}(27, \cdot)\)$,$ \(\chi_{122}(41, \cdot)\)$,$ \(\chi_{122}(113, \cdot)\)

$122$ $61$ $10$ even
Next