Learn more

Refine search


Results (48 matches)

  displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
608.a

\(\chi_{608}(1, \cdot)\)

$608$ $1$ $1$ \(\Q\) even
608.b

\(\chi_{608}(303, \cdot)\)

$608$ $152$ $2$ \(\Q\) even
608.c

\(\chi_{608}(305, \cdot)\)

$608$ $8$ $2$ \(\Q\) even
608.d

\(\chi_{608}(191, \cdot)\)

$608$ $4$ $2$ \(\Q\) odd
608.e

\(\chi_{608}(417, \cdot)\)

$608$ $19$ $2$ \(\Q\) odd
608.f

\(\chi_{608}(495, \cdot)\)

$608$ $8$ $2$ \(\Q\) odd
608.g

\(\chi_{608}(113, \cdot)\)

$608$ $152$ $2$ \(\Q\) odd
608.h

\(\chi_{608}(607, \cdot)\)

$608$ $76$ $2$ \(\Q\) even
608.i

\(\chi_{608}(353, \cdot)\)$,$ \(\chi_{608}(577, \cdot)\)

$608$ $19$ $3$ \(\mathbb{Q}(\zeta_3)\) even
608.j

\(\chi_{608}(265, \cdot)\)$,$ \(\chi_{608}(569, \cdot)\)

$608$ $304$ $4$ \(\mathbb{Q}(i)\) odd
608.k

\(\chi_{608}(153, \cdot)\)$,$ \(\chi_{608}(457, \cdot)\)

$608$ $16$ $4$ \(\mathbb{Q}(i)\) even
608.l

\(\chi_{608}(39, \cdot)\)$,$ \(\chi_{608}(343, \cdot)\)

$608$ $16$ $4$ \(\mathbb{Q}(i)\) odd
608.m

\(\chi_{608}(151, \cdot)\)$,$ \(\chi_{608}(455, \cdot)\)

$608$ $304$ $4$ \(\mathbb{Q}(i)\) even
608.n

\(\chi_{608}(31, \cdot)\)$,$ \(\chi_{608}(255, \cdot)\)

$608$ $76$ $6$ \(\mathbb{Q}(\zeta_3)\) even
608.o

\(\chi_{608}(239, \cdot)\)$,$ \(\chi_{608}(463, \cdot)\)

$608$ $152$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
608.p

\(\chi_{608}(145, \cdot)\)$,$ \(\chi_{608}(369, \cdot)\)

$608$ $152$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
608.q

\(\chi_{608}(159, \cdot)\)$,$ \(\chi_{608}(543, \cdot)\)

$608$ $76$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
608.r

\(\chi_{608}(65, \cdot)\)$,$ \(\chi_{608}(449, \cdot)\)

$608$ $19$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
608.s

\(\chi_{608}(335, \cdot)\)$,$ \(\chi_{608}(559, \cdot)\)

$608$ $152$ $6$ \(\mathbb{Q}(\zeta_3)\) even
608.t

\(\chi_{608}(49, \cdot)\)$,$ \(\chi_{608}(273, \cdot)\)

$608$ $152$ $6$ \(\mathbb{Q}(\zeta_3)\) even
608.u

\(\chi_{608}(75, \cdot)\)$, \cdots ,$\(\chi_{608}(531, \cdot)\)

$608$ $608$ $8$ \(\Q(\zeta_{8})\) even
608.v

\(\chi_{608}(77, \cdot)\)$, \cdots ,$\(\chi_{608}(533, \cdot)\)

$608$ $32$ $8$ \(\Q(\zeta_{8})\) even
608.w

\(\chi_{608}(37, \cdot)\)$, \cdots ,$\(\chi_{608}(493, \cdot)\)

$608$ $608$ $8$ \(\Q(\zeta_{8})\) odd
608.x

\(\chi_{608}(115, \cdot)\)$, \cdots ,$\(\chi_{608}(571, \cdot)\)

$608$ $32$ $8$ \(\Q(\zeta_{8})\) odd
608.y

\(\chi_{608}(161, \cdot)\)$, \cdots ,$\(\chi_{608}(481, \cdot)\)

$608$ $19$ $9$ \(\Q(\zeta_{9})\) even
608.z

\(\chi_{608}(121, \cdot)\)$, \cdots ,$\(\chi_{608}(505, \cdot)\)

$608$ $304$ $12$ \(\Q(\zeta_{12})\) even
608.ba

\(\chi_{608}(217, \cdot)\)$, \cdots ,$\(\chi_{608}(601, \cdot)\)

$608$ $304$ $12$ \(\Q(\zeta_{12})\) odd
608.bb

\(\chi_{608}(103, \cdot)\)$, \cdots ,$\(\chi_{608}(487, \cdot)\)

$608$ $304$ $12$ \(\Q(\zeta_{12})\) even
608.bc

\(\chi_{608}(7, \cdot)\)$, \cdots ,$\(\chi_{608}(391, \cdot)\)

$608$ $304$ $12$ \(\Q(\zeta_{12})\) odd
608.bd

\(\chi_{608}(33, \cdot)\)$, \cdots ,$\(\chi_{608}(545, \cdot)\)

$608$ $19$ $18$ \(\Q(\zeta_{9})\) odd
608.be

\(\chi_{608}(241, \cdot)\)$, \cdots ,$\(\chi_{608}(561, \cdot)\)

$608$ $152$ $18$ \(\Q(\zeta_{9})\) odd
608.bf

\(\chi_{608}(17, \cdot)\)$, \cdots ,$\(\chi_{608}(593, \cdot)\)

$608$ $152$ $18$ \(\Q(\zeta_{9})\) even
608.bg

\(\chi_{608}(47, \cdot)\)$, \cdots ,$\(\chi_{608}(367, \cdot)\)

$608$ $152$ $18$ \(\Q(\zeta_{9})\) odd
608.bh

\(\chi_{608}(15, \cdot)\)$, \cdots ,$\(\chi_{608}(591, \cdot)\)

$608$ $152$ $18$ \(\Q(\zeta_{9})\) even
608.bi

\(\chi_{608}(127, \cdot)\)$, \cdots ,$\(\chi_{608}(447, \cdot)\)

$608$ $76$ $18$ \(\Q(\zeta_{9})\) even
608.bj

\(\chi_{608}(63, \cdot)\)$, \cdots ,$\(\chi_{608}(575, \cdot)\)

$608$ $76$ $18$ \(\Q(\zeta_{9})\) odd
608.bk

\(\chi_{608}(11, \cdot)\)$, \cdots ,$\(\chi_{608}(539, \cdot)\)

$608$ $608$ $24$ \(\Q(\zeta_{24})\) odd
608.bl

\(\chi_{608}(69, \cdot)\)$, \cdots ,$\(\chi_{608}(597, \cdot)\)

$608$ $608$ $24$ \(\Q(\zeta_{24})\) odd
608.bm

\(\chi_{608}(45, \cdot)\)$, \cdots ,$\(\chi_{608}(581, \cdot)\)

$608$ $608$ $24$ \(\Q(\zeta_{24})\) even
608.bn

\(\chi_{608}(27, \cdot)\)$, \cdots ,$\(\chi_{608}(563, \cdot)\)

$608$ $608$ $24$ \(\Q(\zeta_{24})\) even
608.bo

\(\chi_{608}(71, \cdot)\)$, \cdots ,$\(\chi_{608}(599, \cdot)\)

$608$ $304$ $36$ \(\Q(\zeta_{36})\) even
608.bp

\(\chi_{608}(23, \cdot)\)$, \cdots ,$\(\chi_{608}(567, \cdot)\)

$608$ $304$ $36$ \(\Q(\zeta_{36})\) odd
608.bq

\(\chi_{608}(9, \cdot)\)$, \cdots ,$\(\chi_{608}(537, \cdot)\)

$608$ $304$ $36$ \(\Q(\zeta_{36})\) even
608.br

\(\chi_{608}(41, \cdot)\)$, \cdots ,$\(\chi_{608}(585, \cdot)\)

$608$ $304$ $36$ \(\Q(\zeta_{36})\) odd
608.bs

\(\chi_{608}(5, \cdot)\)$, \cdots ,$\(\chi_{608}(605, \cdot)\)

$608$ $608$ $72$ $\Q(\zeta_{72})$ even
608.bt

\(\chi_{608}(3, \cdot)\)$, \cdots ,$\(\chi_{608}(603, \cdot)\)

$608$ $608$ $72$ $\Q(\zeta_{72})$ even
608.bu

\(\chi_{608}(35, \cdot)\)$, \cdots ,$\(\chi_{608}(595, \cdot)\)

$608$ $608$ $72$ $\Q(\zeta_{72})$ odd
608.bv

\(\chi_{608}(13, \cdot)\)$, \cdots ,$\(\chi_{608}(573, \cdot)\)

$608$ $608$ $72$ $\Q(\zeta_{72})$ odd
  displayed columns for results