Learn more

Refine search


Results (48 matches)

  displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
247.a

\(\chi_{247}(1, \cdot)\)

$247$ $1$ $1$ \(\Q\) even
247.b

\(\chi_{247}(170, \cdot)\)

$247$ $19$ $2$ \(\Q\) odd
247.c

\(\chi_{247}(77, \cdot)\)

$247$ $13$ $2$ \(\Q\) even
247.d

\(\chi_{247}(246, \cdot)\)

$247$ $247$ $2$ \(\Q\) odd
247.e

\(\chi_{247}(87, \cdot)\)$,$ \(\chi_{247}(159, \cdot)\)

$247$ $247$ $3$ \(\mathbb{Q}(\zeta_3)\) even
247.f

\(\chi_{247}(144, \cdot)\)$,$ \(\chi_{247}(235, \cdot)\)

$247$ $19$ $3$ \(\mathbb{Q}(\zeta_3)\) even
247.g

\(\chi_{247}(172, \cdot)\)$,$ \(\chi_{247}(191, \cdot)\)

$247$ $13$ $3$ \(\mathbb{Q}(\zeta_3)\) even
247.h

\(\chi_{247}(68, \cdot)\)$,$ \(\chi_{247}(178, \cdot)\)

$247$ $247$ $3$ \(\mathbb{Q}(\zeta_3)\) even
247.i

\(\chi_{247}(18, \cdot)\)$,$ \(\chi_{247}(151, \cdot)\)

$247$ $247$ $4$ \(\mathbb{Q}(i)\) even
247.j

\(\chi_{247}(96, \cdot)\)$,$ \(\chi_{247}(229, \cdot)\)

$247$ $13$ $4$ \(\mathbb{Q}(i)\) odd
247.k

\(\chi_{247}(126, \cdot)\)$,$ \(\chi_{247}(198, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.l

\(\chi_{247}(49, \cdot)\)$,$ \(\chi_{247}(121, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) even
247.m

\(\chi_{247}(56, \cdot)\)$,$ \(\chi_{247}(75, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.n

\(\chi_{247}(12, \cdot)\)$,$ \(\chi_{247}(103, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.o

\(\chi_{247}(88, \cdot)\)$,$ \(\chi_{247}(160, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.p

\(\chi_{247}(134, \cdot)\)$,$ \(\chi_{247}(153, \cdot)\)

$247$ $13$ $6$ \(\mathbb{Q}(\zeta_3)\) even
247.q

\(\chi_{247}(64, \cdot)\)$,$ \(\chi_{247}(220, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) even
247.r

\(\chi_{247}(30, \cdot)\)$,$ \(\chi_{247}(140, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) even
247.s

\(\chi_{247}(107, \cdot)\)$,$ \(\chi_{247}(217, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.t

\(\chi_{247}(27, \cdot)\)$,$ \(\chi_{247}(183, \cdot)\)

$247$ $19$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.u

\(\chi_{247}(94, \cdot)\)$,$ \(\chi_{247}(113, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.v

\(\chi_{247}(69, \cdot)\)$,$ \(\chi_{247}(179, \cdot)\)

$247$ $247$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
247.w

\(\chi_{247}(35, \cdot)\)$, \cdots ,$\(\chi_{247}(237, \cdot)\)

$247$ $247$ $9$ \(\Q(\zeta_{9})\) even
247.x

\(\chi_{247}(66, \cdot)\)$, \cdots ,$\(\chi_{247}(196, \cdot)\)

$247$ $19$ $9$ \(\Q(\zeta_{9})\) even
247.y

\(\chi_{247}(9, \cdot)\)$, \cdots ,$\(\chi_{247}(139, \cdot)\)

$247$ $247$ $9$ \(\Q(\zeta_{9})\) even
247.z

\(\chi_{247}(141, \cdot)\)$, \cdots ,$\(\chi_{247}(240, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) even
247.ba

\(\chi_{247}(102, \cdot)\)$, \cdots ,$\(\chi_{247}(201, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) odd
247.bb

\(\chi_{247}(83, \cdot)\)$, \cdots ,$\(\chi_{247}(239, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) odd
247.bc

\(\chi_{247}(20, \cdot)\)$, \cdots ,$\(\chi_{247}(210, \cdot)\)

$247$ $13$ $12$ \(\Q(\zeta_{12})\) odd
247.bd

\(\chi_{247}(37, \cdot)\)$, \cdots ,$\(\chi_{247}(227, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) even
247.be

\(\chi_{247}(8, \cdot)\)$, \cdots ,$\(\chi_{247}(164, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) even
247.bf

\(\chi_{247}(46, \cdot)\)$, \cdots ,$\(\chi_{247}(145, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) even
247.bg

\(\chi_{247}(7, \cdot)\)$, \cdots ,$\(\chi_{247}(106, \cdot)\)

$247$ $247$ $12$ \(\Q(\zeta_{12})\) odd
247.bh

\(\chi_{247}(108, \cdot)\)$, \cdots ,$\(\chi_{247}(238, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) odd
247.bi

\(\chi_{247}(4, \cdot)\)$, \cdots ,$\(\chi_{247}(244, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) even
247.bj

\(\chi_{247}(22, \cdot)\)$, \cdots ,$\(\chi_{247}(230, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) odd
247.bk

\(\chi_{247}(14, \cdot)\)$, \cdots ,$\(\chi_{247}(222, \cdot)\)

$247$ $19$ $18$ \(\Q(\zeta_{9})\) odd
247.bl

\(\chi_{247}(51, \cdot)\)$, \cdots ,$\(\chi_{247}(181, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) odd
247.bm

\(\chi_{247}(10, \cdot)\)$, \cdots ,$\(\chi_{247}(212, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) odd
247.bn

\(\chi_{247}(25, \cdot)\)$, \cdots ,$\(\chi_{247}(233, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) even
247.bo

\(\chi_{247}(17, \cdot)\)$, \cdots ,$\(\chi_{247}(225, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) even
247.bp

\(\chi_{247}(3, \cdot)\)$, \cdots ,$\(\chi_{247}(243, \cdot)\)

$247$ $247$ $18$ \(\Q(\zeta_{9})\) odd
247.bq

\(\chi_{247}(15, \cdot)\)$, \cdots ,$\(\chi_{247}(219, \cdot)\)

$247$ $247$ $36$ \(\Q(\zeta_{36})\) even
247.br

\(\chi_{247}(2, \cdot)\)$, \cdots ,$\(\chi_{247}(241, \cdot)\)

$247$ $247$ $36$ \(\Q(\zeta_{36})\) even
247.bs

\(\chi_{247}(21, \cdot)\)$, \cdots ,$\(\chi_{247}(242, \cdot)\)

$247$ $247$ $36$ \(\Q(\zeta_{36})\) even
247.bt

\(\chi_{247}(28, \cdot)\)$, \cdots ,$\(\chi_{247}(232, \cdot)\)

$247$ $247$ $36$ \(\Q(\zeta_{36})\) odd
247.bu

\(\chi_{247}(6, \cdot)\)$, \cdots ,$\(\chi_{247}(245, \cdot)\)

$247$ $247$ $36$ \(\Q(\zeta_{36})\) odd
247.bv

\(\chi_{247}(5, \cdot)\)$, \cdots ,$\(\chi_{247}(226, \cdot)\)

$247$ $247$ $36$ \(\Q(\zeta_{36})\) odd
  displayed columns for results