Properties

Label 997.329
Modulus $997$
Conductor $997$
Order $166$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(997, base_ring=CyclotomicField(166))
 
M = H._module
 
chi = DirichletCharacter(H, M([27]))
 
pari: [g,chi] = znchar(Mod(329,997))
 

Basic properties

Modulus: \(997\)
Conductor: \(997\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(166\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 997.h

\(\chi_{997}(3,\cdot)\) \(\chi_{997}(4,\cdot)\) \(\chi_{997}(10,\cdot)\) \(\chi_{997}(25,\cdot)\) \(\chi_{997}(27,\cdot)\) \(\chi_{997}(31,\cdot)\) \(\chi_{997}(36,\cdot)\) \(\chi_{997}(48,\cdot)\) \(\chi_{997}(64,\cdot)\) \(\chi_{997}(83,\cdot)\) \(\chi_{997}(90,\cdot)\) \(\chi_{997}(97,\cdot)\) \(\chi_{997}(109,\cdot)\) \(\chi_{997}(120,\cdot)\) \(\chi_{997}(160,\cdot)\) \(\chi_{997}(167,\cdot)\) \(\chi_{997}(193,\cdot)\) \(\chi_{997}(199,\cdot)\) \(\chi_{997}(201,\cdot)\) \(\chi_{997}(222,\cdot)\) \(\chi_{997}(225,\cdot)\) \(\chi_{997}(243,\cdot)\) \(\chi_{997}(266,\cdot)\) \(\chi_{997}(268,\cdot)\) \(\chi_{997}(279,\cdot)\) \(\chi_{997}(296,\cdot)\) \(\chi_{997}(300,\cdot)\) \(\chi_{997}(311,\cdot)\) \(\chi_{997}(322,\cdot)\) \(\chi_{997}(324,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{83})$
Fixed field: Number field defined by a degree 166 polynomial (not computed)

Values on generators

\(7\) → \(e\left(\frac{27}{166}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 997 }(329, a) \) \(1\)\(1\)\(e\left(\frac{115}{166}\right)\)\(e\left(\frac{81}{83}\right)\)\(e\left(\frac{32}{83}\right)\)\(e\left(\frac{105}{166}\right)\)\(e\left(\frac{111}{166}\right)\)\(e\left(\frac{27}{166}\right)\)\(e\left(\frac{13}{166}\right)\)\(e\left(\frac{79}{83}\right)\)\(e\left(\frac{27}{83}\right)\)\(e\left(\frac{147}{166}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 997 }(329,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 997 }(329,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 997 }(329,·),\chi_{ 997 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 997 }(329,·)) \;\) at \(\; a,b = \) e.g. 1,2