sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(9900)
sage: chi = H[3331]
pari: [g,chi] = znchar(Mod(3331,9900))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 1100 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 10 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 9900.dr |
Orbit index | = | 96 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{9900}(91,\cdot)\) \(\chi_{9900}(1171,\cdot)\) \(\chi_{9900}(2611,\cdot)\) \(\chi_{9900}(3331,\cdot)\)
Inducing primitive character
Values on generators
\((4951,5501,2377,4501)\) → \((-1,1,e\left(\frac{2}{5}\right),e\left(\frac{3}{5}\right))\)
Values
-1 | 1 | 7 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
\(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-1\) | \(e\left(\frac{9}{10}\right)\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) |
Related number fields
Field of values | \(\Q(\zeta_{5})\) |