Properties

Label 990.br
Modulus $990$
Conductor $495$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([5,15,21])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(29,990)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(990\)
Conductor: \(495\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 495.bo
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{990}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{990}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{990}(239,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{990}(299,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{990}(479,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{990}(569,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{990}(689,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{990}(959,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{3}\right)\)