sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(99, base_ring=CyclotomicField(10))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,9]))
pari: [g,chi] = znchar(Mod(28,99))
Basic properties
Modulus: | \(99\) | |
Conductor: | \(11\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(10\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{11}(6,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 99.k
\(\chi_{99}(19,\cdot)\) \(\chi_{99}(28,\cdot)\) \(\chi_{99}(46,\cdot)\) \(\chi_{99}(73,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{5})\) |
Fixed field: | \(\Q(\zeta_{11})\) |
Values on generators
\((56,46)\) → \((1,e\left(\frac{9}{10}\right))\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{99}(28,\cdot)) = \sum_{r\in \Z/99\Z} \chi_{99}(28,r) e\left(\frac{2r}{99}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{99}(28,\cdot),\chi_{99}(1,\cdot)) = \sum_{r\in \Z/99\Z} \chi_{99}(28,r) \chi_{99}(1,1-r) = -3 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{99}(28,·))
= \sum_{r \in \Z/99\Z}
\chi_{99}(28,r) e\left(\frac{1 r + 2 r^{-1}}{99}\right)
= 0.0 \)