# Properties

 Label 980.517 Modulus $980$ Conductor $245$ Order $28$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(980, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,7,2]))

pari: [g,chi] = znchar(Mod(517,980))

## Basic properties

 Modulus: $$980$$ Conductor: $$245$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{245}(27,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 980.bi

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: 28.28.857574960063654015836849375042748140931725025177001953125.1

## Values on generators

$$(491,197,101)$$ → $$(1,i,e\left(\frac{1}{14}\right))$$

## Values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$\chi_{ 980 }(517, a)$$ $$1$$ $$1$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$1$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$-1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 980 }(517,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 980 }(517,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 980 }(517,·),\chi_{ 980 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 980 }(517,·)) \;$$ at $$\; a,b =$$ e.g. 1,2