sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(968, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,84]))
pari:[g,chi] = znchar(Mod(643,968))
| Modulus: | \(968\) | |
| Conductor: | \(968\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{968}(59,\cdot)\)
\(\chi_{968}(75,\cdot)\)
\(\chi_{968}(91,\cdot)\)
\(\chi_{968}(115,\cdot)\)
\(\chi_{968}(147,\cdot)\)
\(\chi_{968}(163,\cdot)\)
\(\chi_{968}(179,\cdot)\)
\(\chi_{968}(203,\cdot)\)
\(\chi_{968}(235,\cdot)\)
\(\chi_{968}(267,\cdot)\)
\(\chi_{968}(291,\cdot)\)
\(\chi_{968}(339,\cdot)\)
\(\chi_{968}(355,\cdot)\)
\(\chi_{968}(379,\cdot)\)
\(\chi_{968}(411,\cdot)\)
\(\chi_{968}(427,\cdot)\)
\(\chi_{968}(443,\cdot)\)
\(\chi_{968}(467,\cdot)\)
\(\chi_{968}(499,\cdot)\)
\(\chi_{968}(515,\cdot)\)
\(\chi_{968}(531,\cdot)\)
\(\chi_{968}(555,\cdot)\)
\(\chi_{968}(587,\cdot)\)
\(\chi_{968}(603,\cdot)\)
\(\chi_{968}(619,\cdot)\)
\(\chi_{968}(643,\cdot)\)
\(\chi_{968}(675,\cdot)\)
\(\chi_{968}(691,\cdot)\)
\(\chi_{968}(707,\cdot)\)
\(\chi_{968}(731,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,485,849)\) → \((-1,-1,e\left(\frac{42}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 968 }(643, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)