Properties

Label 966.z
Modulus $966$
Conductor $161$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,22,63]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(37,966))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(966\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 161.p
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{966}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{966}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{966}(79,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{966}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{966}(205,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{966}(235,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{966}(247,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{966}(319,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{966}(373,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{966}(457,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{966}(571,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{966}(613,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{966}(655,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{966}(697,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{966}(709,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{966}(751,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{966}(793,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{966}(835,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{966}(865,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{966}(907,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{7}{11}\right)\)