Properties

Label 966.y
Modulus $966$
Conductor $161$
Order $33$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,44,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(25,966))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(966\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(33\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 161.m
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: 33.33.277966181338944111003326058293667039541136678070715028736001.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{966}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{966}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{966}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{966}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{966}(193,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{966}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{966}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{966}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{966}(403,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{966}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{966}(487,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{966}(499,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{966}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{966}(583,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{966}(625,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{966}(739,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{966}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{966}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{966}(949,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{966}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{6}{11}\right)\)