Properties

Label 966.241
Modulus $966$
Conductor $161$
Order $66$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(966, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,27]))
 
pari: [g,chi] = znchar(Mod(241,966))
 

Basic properties

Modulus: \(966\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{161}(80,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 966.be

\(\chi_{966}(19,\cdot)\) \(\chi_{966}(61,\cdot)\) \(\chi_{966}(103,\cdot)\) \(\chi_{966}(145,\cdot)\) \(\chi_{966}(157,\cdot)\) \(\chi_{966}(199,\cdot)\) \(\chi_{966}(241,\cdot)\) \(\chi_{966}(283,\cdot)\) \(\chi_{966}(313,\cdot)\) \(\chi_{966}(355,\cdot)\) \(\chi_{966}(451,\cdot)\) \(\chi_{966}(481,\cdot)\) \(\chi_{966}(493,\cdot)\) \(\chi_{966}(523,\cdot)\) \(\chi_{966}(619,\cdot)\) \(\chi_{966}(649,\cdot)\) \(\chi_{966}(661,\cdot)\) \(\chi_{966}(733,\cdot)\) \(\chi_{966}(787,\cdot)\) \(\chi_{966}(871,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((323,829,925)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{9}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 966 }(241, a) \) \(1\)\(1\)\(e\left(\frac{8}{33}\right)\)\(e\left(\frac{23}{66}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{32}{33}\right)\)\(e\left(\frac{16}{33}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{41}{66}\right)\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{9}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 966 }(241,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 966 }(241,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 966 }(241,·),\chi_{ 966 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 966 }(241,·)) \;\) at \(\; a,b = \) e.g. 1,2