from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(966, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,55,60]))
pari: [g,chi] = znchar(Mod(173,966))
Basic properties
Modulus: | \(966\) | |
Conductor: | \(483\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{483}(173,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 966.bd
\(\chi_{966}(59,\cdot)\) \(\chi_{966}(101,\cdot)\) \(\chi_{966}(131,\cdot)\) \(\chi_{966}(173,\cdot)\) \(\chi_{966}(215,\cdot)\) \(\chi_{966}(257,\cdot)\) \(\chi_{966}(269,\cdot)\) \(\chi_{966}(311,\cdot)\) \(\chi_{966}(353,\cdot)\) \(\chi_{966}(395,\cdot)\) \(\chi_{966}(509,\cdot)\) \(\chi_{966}(593,\cdot)\) \(\chi_{966}(647,\cdot)\) \(\chi_{966}(719,\cdot)\) \(\chi_{966}(731,\cdot)\) \(\chi_{966}(761,\cdot)\) \(\chi_{966}(857,\cdot)\) \(\chi_{966}(887,\cdot)\) \(\chi_{966}(899,\cdot)\) \(\chi_{966}(929,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((323,829,925)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{10}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 966 }(173, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)