Properties

Label 966.97
Modulus $966$
Conductor $161$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(966, base_ring=CyclotomicField(22))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,11,1]))
 
pari: [g,chi] = znchar(Mod(97,966))
 

Basic properties

Modulus: \(966\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{161}(97,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 966.s

\(\chi_{966}(97,\cdot)\) \(\chi_{966}(181,\cdot)\) \(\chi_{966}(433,\cdot)\) \(\chi_{966}(475,\cdot)\) \(\chi_{966}(517,\cdot)\) \(\chi_{966}(559,\cdot)\) \(\chi_{966}(727,\cdot)\) \(\chi_{966}(769,\cdot)\) \(\chi_{966}(895,\cdot)\) \(\chi_{966}(937,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((323,829,925)\) → \((1,-1,e\left(\frac{1}{22}\right))\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\(1\)\(1\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{1}{22}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.78048218870425324004237696277333187889.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 966 }(97,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{966}(97,\cdot)) = \sum_{r\in \Z/966\Z} \chi_{966}(97,r) e\left(\frac{r}{483}\right) = 9.4432477047+8.474967421i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 966 }(97,·),\chi_{ 966 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{966}(97,\cdot),\chi_{966}(1,\cdot)) = \sum_{r\in \Z/966\Z} \chi_{966}(97,r) \chi_{966}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 966 }(97,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{966}(97,·)) = \sum_{r \in \Z/966\Z} \chi_{966}(97,r) e\left(\frac{1 r + 2 r^{-1}}{966}\right) = -5.9128563367+-1.7361712694i \)