from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(966, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,0,2]))
pari: [g,chi] = znchar(Mod(71,966))
Basic properties
Modulus: | \(966\) | |
Conductor: | \(69\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(22\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{69}(2,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 966.w
\(\chi_{966}(29,\cdot)\) \(\chi_{966}(71,\cdot)\) \(\chi_{966}(197,\cdot)\) \(\chi_{966}(239,\cdot)\) \(\chi_{966}(407,\cdot)\) \(\chi_{966}(449,\cdot)\) \(\chi_{966}(491,\cdot)\) \(\chi_{966}(533,\cdot)\) \(\chi_{966}(785,\cdot)\) \(\chi_{966}(869,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | 22.0.304011857053427966889939263171547.1 |
Values on generators
\((323,829,925)\) → \((-1,1,e\left(\frac{1}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 966 }(71, a) \) | \(-1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)