sage: H = DirichletGroup(966)
pari: g = idealstar(,966,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 264 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{66}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{966}(323,\cdot)$, $\chi_{966}(829,\cdot)$, $\chi_{966}(925,\cdot)$ |
First 32 of 264 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{966}(1,\cdot)\) | 966.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{966}(5,\cdot)\) | 966.bc | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{47}{66}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{43}{66}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{966}(11,\cdot)\) | 966.bf | 66 | no | \(1\) | \(1\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{966}(13,\cdot)\) | 966.v | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{966}(17,\cdot)\) | 966.bc | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{43}{66}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{966}(19,\cdot)\) | 966.be | 66 | no | \(1\) | \(1\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{966}(25,\cdot)\) | 966.y | 33 | no | \(1\) | \(1\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{966}(29,\cdot)\) | 966.w | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{966}(31,\cdot)\) | 966.bb | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{966}(37,\cdot)\) | 966.z | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{47}{66}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{966}(41,\cdot)\) | 966.t | 22 | no | \(1\) | \(1\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{966}(43,\cdot)\) | 966.x | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) |
\(\chi_{966}(47,\cdot)\) | 966.l | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
\(\chi_{966}(53,\cdot)\) | 966.bf | 66 | no | \(1\) | \(1\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{966}(55,\cdot)\) | 966.v | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{966}(59,\cdot)\) | 966.bd | 66 | no | \(1\) | \(1\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{25}{66}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{7}{11}\right)\) |
\(\chi_{966}(61,\cdot)\) | 966.be | 66 | no | \(1\) | \(1\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{966}(65,\cdot)\) | 966.bf | 66 | no | \(1\) | \(1\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{966}(67,\cdot)\) | 966.z | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{49}{66}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{966}(71,\cdot)\) | 966.w | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) |
\(\chi_{966}(73,\cdot)\) | 966.bb | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{29}{66}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{966}(79,\cdot)\) | 966.z | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{47}{66}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{35}{66}\right)\) | \(e\left(\frac{7}{11}\right)\) |
\(\chi_{966}(83,\cdot)\) | 966.u | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{966}(85,\cdot)\) | 966.q | 11 | no | \(1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) |
\(\chi_{966}(89,\cdot)\) | 966.bc | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{29}{66}\right)\) | \(e\left(\frac{8}{11}\right)\) |
\(\chi_{966}(95,\cdot)\) | 966.ba | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{47}{66}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{966}(97,\cdot)\) | 966.s | 22 | no | \(1\) | \(1\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{966}(101,\cdot)\) | 966.bd | 66 | no | \(1\) | \(1\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{43}{66}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{966}(103,\cdot)\) | 966.be | 66 | no | \(1\) | \(1\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{966}(107,\cdot)\) | 966.bf | 66 | no | \(1\) | \(1\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{966}(109,\cdot)\) | 966.z | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{43}{66}\right)\) | \(e\left(\frac{35}{66}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{966}(113,\cdot)\) | 966.r | 22 | no | \(1\) | \(1\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) |