sage: H = DirichletGroup(960)
pari: g = idealstar(,960,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 256 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{16}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{960}(511,\cdot)$, $\chi_{960}(901,\cdot)$, $\chi_{960}(641,\cdot)$, $\chi_{960}(577,\cdot)$ |
First 32 of 256 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{960}(1,\cdot)\) | 960.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{960}(7,\cdot)\) | 960.cc | 8 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) |
\(\chi_{960}(11,\cdot)\) | 960.cn | 16 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{960}(13,\cdot)\) | 960.cq | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{960}(17,\cdot)\) | 960.bf | 4 | no | \(1\) | \(1\) | \(-i\) | \(i\) | \(1\) | \(-i\) | \(-i\) | \(-i\) | \(i\) | \(1\) | \(1\) | \(1\) |
\(\chi_{960}(19,\cdot)\) | 960.co | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{960}(23,\cdot)\) | 960.ca | 8 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) |
\(\chi_{960}(29,\cdot)\) | 960.cl | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{960}(31,\cdot)\) | 960.g | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) |
\(\chi_{960}(37,\cdot)\) | 960.cq | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-1\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{960}(41,\cdot)\) | 960.bz | 8 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) |
\(\chi_{960}(43,\cdot)\) | 960.cg | 16 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{960}(47,\cdot)\) | 960.bd | 4 | no | \(-1\) | \(1\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(i\) | \(i\) | \(-1\) | \(1\) | \(1\) |
\(\chi_{960}(49,\cdot)\) | 960.bl | 4 | no | \(1\) | \(1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(1\) | \(-i\) | \(1\) | \(-i\) | \(-1\) |
\(\chi_{960}(53,\cdot)\) | 960.cr | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{960}(59,\cdot)\) | 960.cp | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{960}(61,\cdot)\) | 960.ci | 16 | no | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{960}(67,\cdot)\) | 960.cg | 16 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-1\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(1\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{960}(71,\cdot)\) | 960.bx | 8 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) |
\(\chi_{960}(73,\cdot)\) | 960.bp | 8 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) |
\(\chi_{960}(77,\cdot)\) | 960.cr | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{960}(79,\cdot)\) | 960.q | 4 | no | \(-1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) | \(-1\) |
\(\chi_{960}(83,\cdot)\) | 960.ch | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{960}(89,\cdot)\) | 960.bu | 8 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) |
\(\chi_{960}(91,\cdot)\) | 960.cm | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{960}(97,\cdot)\) | 960.x | 4 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(i\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(1\) | \(-i\) | \(1\) |
\(\chi_{960}(101,\cdot)\) | 960.cj | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{960}(103,\cdot)\) | 960.bo | 8 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) |
\(\chi_{960}(107,\cdot)\) | 960.ch | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{960}(109,\cdot)\) | 960.ck | 16 | no | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{960}(113,\cdot)\) | 960.bf | 4 | no | \(1\) | \(1\) | \(i\) | \(-i\) | \(1\) | \(i\) | \(i\) | \(i\) | \(-i\) | \(1\) | \(1\) | \(1\) |
\(\chi_{960}(119,\cdot)\) | 960.bs | 8 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) |