# Properties

 Label 96.89 Modulus $96$ Conductor $48$ Order $4$ Real no Primitive no Minimal no Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(96, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,1,2]))

pari: [g,chi] = znchar(Mod(89,96))

## Basic properties

 Modulus: $$96$$ Conductor: $$48$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{48}(5,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 96.i

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.0.18432.2

## Values on generators

$$(31,37,65)$$ → $$(1,i,-1)$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$-1$$ $$1$$ $$-i$$ $$-1$$ $$-i$$ $$-i$$ $$-1$$ $$-i$$ $$1$$ $$-1$$ $$i$$ $$1$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 96 }(89,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{96}(89,\cdot)) = \sum_{r\in \Z/96\Z} \chi_{96}(89,r) e\left(\frac{r}{48}\right) = 12.8016503231+-5.3026171846i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 96 }(89,·),\chi_{ 96 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{96}(89,\cdot),\chi_{96}(1,\cdot)) = \sum_{r\in \Z/96\Z} \chi_{96}(89,r) \chi_{96}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 96 }(89,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{96}(89,·)) = \sum_{r \in \Z/96\Z} \chi_{96}(89,r) e\left(\frac{1 r + 2 r^{-1}}{96}\right) = -0.0$$