Properties

Modulus $96$
Structure \(C_{2}\times C_{2}\times C_{8}\)
Order $32$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(96)
 
Copy content pari:g = idealstar(,96,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 32
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{8}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{96}(31,\cdot)$, $\chi_{96}(37,\cdot)$, $\chi_{96}(65,\cdot)$

First 32 of 32 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{96}(1,\cdot)\) 96.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{96}(5,\cdot)\) 96.p 8 yes \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(1\)
\(\chi_{96}(7,\cdot)\) 96.l 4 no \(-1\) \(1\) \(i\) \(1\) \(-i\) \(-i\) \(1\) \(i\) \(1\) \(-1\) \(-i\) \(-1\)
\(\chi_{96}(11,\cdot)\) 96.o 8 yes \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(-1\)
\(\chi_{96}(13,\cdot)\) 96.n 8 no \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(1\)
\(\chi_{96}(17,\cdot)\) 96.h 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{96}(19,\cdot)\) 96.m 8 no \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(-1\)
\(\chi_{96}(23,\cdot)\) 96.k 4 no \(1\) \(1\) \(i\) \(1\) \(-i\) \(i\) \(-1\) \(-i\) \(-1\) \(-1\) \(-i\) \(-1\)
\(\chi_{96}(25,\cdot)\) 96.j 4 no \(1\) \(1\) \(i\) \(-1\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(-i\) \(1\)
\(\chi_{96}(29,\cdot)\) 96.p 8 yes \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(1\)
\(\chi_{96}(31,\cdot)\) 96.g 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)
\(\chi_{96}(35,\cdot)\) 96.o 8 yes \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(-1\)
\(\chi_{96}(37,\cdot)\) 96.n 8 no \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(1\)
\(\chi_{96}(41,\cdot)\) 96.i 4 no \(-1\) \(1\) \(i\) \(-1\) \(i\) \(i\) \(-1\) \(i\) \(1\) \(-1\) \(-i\) \(1\)
\(\chi_{96}(43,\cdot)\) 96.m 8 no \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(-1\)
\(\chi_{96}(47,\cdot)\) 96.f 2 no \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\)
\(\chi_{96}(49,\cdot)\) 96.d 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{96}(53,\cdot)\) 96.p 8 yes \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(1\)
\(\chi_{96}(55,\cdot)\) 96.l 4 no \(-1\) \(1\) \(-i\) \(1\) \(i\) \(i\) \(1\) \(-i\) \(1\) \(-1\) \(i\) \(-1\)
\(\chi_{96}(59,\cdot)\) 96.o 8 yes \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(-1\)
\(\chi_{96}(61,\cdot)\) 96.n 8 no \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(1\)
\(\chi_{96}(65,\cdot)\) 96.e 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{96}(67,\cdot)\) 96.m 8 no \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(-1\)
\(\chi_{96}(71,\cdot)\) 96.k 4 no \(1\) \(1\) \(-i\) \(1\) \(i\) \(-i\) \(-1\) \(i\) \(-1\) \(-1\) \(i\) \(-1\)
\(\chi_{96}(73,\cdot)\) 96.j 4 no \(1\) \(1\) \(-i\) \(-1\) \(-i\) \(i\) \(1\) \(i\) \(-1\) \(-1\) \(i\) \(1\)
\(\chi_{96}(77,\cdot)\) 96.p 8 yes \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(1\)
\(\chi_{96}(79,\cdot)\) 96.b 2 no \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)
\(\chi_{96}(83,\cdot)\) 96.o 8 yes \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(-1\)
\(\chi_{96}(85,\cdot)\) 96.n 8 no \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(1\)
\(\chi_{96}(89,\cdot)\) 96.i 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\)
\(\chi_{96}(91,\cdot)\) 96.m 8 no \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(-1\)
\(\chi_{96}(95,\cdot)\) 96.c 2 no \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)
Click here to search among the remaining 0 characters.