sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9576, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,9,12,0,16]))
pari:[g,chi] = znchar(Mod(43,9576))
\(\chi_{9576}(43,\cdot)\)
\(\chi_{9576}(1555,\cdot)\)
\(\chi_{9576}(2227,\cdot)\)
\(\chi_{9576}(2563,\cdot)\)
\(\chi_{9576}(4243,\cdot)\)
\(\chi_{9576}(7267,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7183,4789,5321,4105,1009)\) → \((-1,-1,e\left(\frac{2}{3}\right),1,e\left(\frac{8}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 9576 }(43, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{8}{9}\right)\) |
sage:chi.jacobi_sum(n)