# Properties

 Label 95.m Modulus $95$ Conductor $95$ Order $12$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(95, base_ring=CyclotomicField(12))

M = H._module

chi = DirichletCharacter(H, M([3,4]))

chi.galois_orbit()

[g,chi] = znchar(Mod(7,95))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$95$$ Conductor: $$95$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.0.33171021564453125.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$
$$\chi_{95}(7,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$i$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{95}(68,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$-i$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{95}(83,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$i$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{95}(87,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$i$$ $$e\left(\frac{1}{12}\right)$$