Conductor 189
Order 9
Real no
Primitive no
Minimal yes
Parity even
Orbit label 9450.bu

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(9450)
sage: chi = H[1201]
pari: [g,chi] = znchar(Mod(1201,9450))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 189
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 9
Real = no
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = no
Minimal = yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = even
Orbit label = 9450.bu
Orbit index = 47

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{9450}(1201,\cdot)\) \(\chi_{9450}(2851,\cdot)\) \(\chi_{9450}(4351,\cdot)\) \(\chi_{9450}(6001,\cdot)\) \(\chi_{9450}(7501,\cdot)\) \(\chi_{9450}(9151,\cdot)\)

Values on generators

\((9101,6427,6751)\) → \((e\left(\frac{4}{9}\right),1,e\left(\frac{2}{3}\right))\)


value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{9})\)